Steinthorsdottir Margret (Orcid ID: 0000-0002-7893-1142)
Jardine Phillip, Edward (Orcid ID: 0000-0002-8268-2353)

Near-Future pCO$_2$ during the hot Mid Miocene Climatic Optimum

M. Steinthorsdottir1,2, P. E. Jardine3, and W. C. Rember4

1Department of Palaeobiology, Swedish Museum of Natural History, SE 104 05 Stockholm, Sweden, 2Bolin Centre for Climate Research, Stockholm University, SE 109 61 Stockholm, Sweden, 3Institute of Geology and Palaeontology, University of Münster, 48149 Münster, Germany, 4Department of Geological Sciences, University of Idaho, Moscow, Idaho 83844, USA.

Corresponding author: Margret Steinthorsdottir (margret.steinthorsdottir@nrm.se)

Key Points:

- Mid Miocene Climatic Optimum proxies record high temperatures at moderate pCO$_2$, this cannot be replicated with existing climate models
- Either previously published records underestimate pCO$_2$ or climate models are missing important feedbacks
- We reconstruct moderate pCO$_2$ of ~450–550 ppm, implying that Earth System sensitivity must have been elevated

©2020 American Geophysical Union. All rights reserved.
Abstract

To improve future predictions of anthropogenic climate change, a better understanding of the relationship between global temperature and atmospheric concentrations of CO₂ (pCO₂), or climate sensitivity, is urgently required. Analyzing proxy data from climate change episodes in the past is necessary to achieve this goal, with certain geologic periods, such as the mid Miocene Climatic Optimum (MCO), a transient period of global warming with global temperatures up to ~7°C higher than today, increasingly viewed as good analogues to future climate under present emission scenarios. However, a problem remains that climate models cannot reproduce MCO temperatures with less than ~800 ppm pCO₂, while most previously published proxies record pCO₂ <450 ppm. Here, we reconstructed MCO pCO₂ with a multi-taxon fossil leaf database from the well-dated MCO Lagerstätte deposits of Clarkia, Idaho, USA, using four current methods of pCO₂ reconstructions. The methods are principally based on either stomatal densities, carbon isotopes, or a combination of both – thus offering independent results. The total of six reconstructions mostly record pCO₂ of ~450–550 ppm. Although slightly higher than previously reconstructed pCO₂, the discrepancy with the ~800 ppm required by climate models remains. We conclude that climate sensitivity was heightened during MCO, indicating that highly elevated temperatures can occur at relatively moderate pCO₂. Ever higher climate sensitivity with rising temperatures should be very seriously considered in future predictions of climate change.
1 Introduction

1.1. The Mid Miocene Climatic Optimum

Projections of future climate predict that atmospheric CO$_2$ concentrations (pCO$_2$) will continue to increase due to human activity and reach at least 600 ppm by year 2100 under the ‘business as usual’ scenario (IPPC report, 2014). CO$_2$ is a principal greenhouse gas known to cause global climate change and computer simulations based on current understanding show that these high levels will result in a global temperature increase of at least 4°C, a significant increase which will be perilous to Earth’s biota and human societies (Sherwood & Huber, 2010). Yet there is still considerable uncertainty about the precise relationship between pCO$_2$ and the magnitude of temperature increase – i.e. Earth’s climate sensitivity – and in reality the warming effect could be stronger. One of the most advantageous ways to improve our understanding of this relationship is to look to the geological record, where conditions of past climate change are documented in data archives of rocks and fossils, with past greenhouse periods in particular offering unique perspectives on the response of the Earth system to elevated pCO$_2$. The Miocene period (~23–5 Ma) is of particular interest when comparing to present and near future conditions, because continental positions were quite similar to today and an increasingly ‘modern’ flora and fauna was evolving (see e.g. Flower & Kennett, 1994 and Steinthorsdottir et al., this issue for review). Within this period, the mid Miocene climatic optimum (MCO, ~16.9–14.7 Ma) is the youngest of several transient warm episodes with highly elevated temperatures and perturbations of the carbon cycle, superimposed on a pattern of long-term cooling through the Cenozoic, the past 66 million years of Earth history (Holbourn et al., 2015; Pound et al., 2012; Zachos et al., 2001; 2008). It has been suggested that the MCO was caused by CO$_2$ outgassing from the contemporaneous volcanic emplacement that resulted in the Columbia River Basalt Group (CRBG) (Barry et al., 2013; Kasbohm & Schoene, 2018). A new age model of CRBG emplacement narrows the time span
of active volcanism from ~2 Ma to just 750 ka, simultaneously correlating the onset of CRBG volcanism and the onset of the MCO to less than ~100 ka, supporting the hypothesis that CRBG volcanic emissions acted as the climatic forcing causing the MCO. A shorter duration of the CRBG emplacement would indicate a higher average $p\text{CO}_2$ emission volume as well as higher transient peak $p\text{CO}_2$ concentrations during volcanism (Kasbohm & Schoene, 2018).

A key research problem remains unsolved in relation to the MCO. Most proxy records indicate that atmospheric $p\text{CO}_2$ was < 450 ppm during the MCO (sometimes much lower), which is close to the present and near-future $p\text{CO}_2$ projections. This includes $p\text{CO}_2$ reconstructed using the proxies paleosols (Breecker & Retallack, 2014; Ji et al., 2018; Retallack, 2009); alkenones (Zhang et al., 2013); marine boron isotopes (Badger et al., 2013; Foster et al., 2012; Greenop et al., 2014) and stomata (Grein et al., 2013; Royer, 2003; Royer et al., 2001), with only one stomatal proxy study reporting MCO $p\text{CO}_2$ of up to ~550 ppm (Kürschner et al., 2008). Early results based on *Metasequoia occidentalis* stomatal densities from the same Clarkia localities studied here (Royer, 2003; Royer et al., 2001) indicated low $p\text{CO}_2$ of ~310–315 ppm during MCO, whereas recalibration of the same data by Beerling et al., (2009) reported $p\text{CO}_2$ to be at least 100 ppm higher, in the 400–500 ppm range.

Meanwhile, a host of terrestrial (Goldner et al., 2014; Pound et al., 2012) and marine (Lear et al., 2000; Zhang et al., 2013) paleoclimate archives demonstrate pervasive global warmth up to ~7°C above modern temperatures, unmatched since the Eocene when $p\text{CO}_2$ was >800 ppm. This problem is significant because no climate simulation has so far reproduced MCO warmth at less than ~800 ppm, up to twice the reconstructed $p\text{CO}_2$, even after imposing multiple forcings (Goldner et al., 2014). These observations imply either that important positive feedbacks are missing from the climate models (which are the same ones used for simulating future climate) or that there is a lack of knowledge of past climate forcings. Two recent studies recalibrated previously published marine carbonate and boron isotope MCO
pCO_2 records, using new sensitivity analyses and laboratory experiments, and found pCO_2 levels near or exceeding 800 ppm (Sosdian et al., 2018; Stoll et al., 2019). However, these new results need to be further tested and do not explain the discrepancy with the results derived from terrestrial proxies.

Here, we present new multi-method, multi-taxon pCO_2 reconstructions based on fossil leaves from sedimentary deposits in Idaho, USA, dated to have been accumulated at the height of MCO warming. Our aim was to answer the question: was pCO_2 moderately or highly elevated during the MCO?

2 Materials and Methods

2.1. The Clarkia fossil Lagerstätte deposits

The Clarkia fossil Lagerstätte of northern Idaho, USA, is celebrated for its extraordinary preservation of fossils, in particular the fossil flora (Rember, 1991; Smiley & Rember, 1985a; Smiley et al., 1975). The Clarkia lacustrine sedimentary deposits belong to the Latah Formation and are exposed at several localities near the small town of Clarkia, Shoshone County in Idaho (Fig. 1). The sediments were deposited on the bed of a lake that formed suddenly when the Priest Rapids Member flow of the CRBG Wanapum Formation dammed the proto-St. Maries River to create the deep and elongated Miocene Clarkia Lake in the river valley (Fig. 1) (Smiley & Rember, 1985b; Yang et al., 1995). The lake was surrounded by dense vegetation, and the anoxic bottom conditions which developed in the lake allowed excellent preservation of the plant and animal material that was carried into the lake by wind and water, as well as of ash periodically blown in from nearby active volcanic sites (Ladderud et al., 2015; Rember, 1991; Smiley & Rember, 1985b; Wang et al., 2017). The sedimentary section consists mostly of finely laminated silt and clay and is divided into two
zones: an upper oxidized zone and a lower unoxidized zone of varying thickness throughout the basin, with the best-preserved compression leaf fossils found in the lower zone, and mostly lower-quality impression leaf fossils in the upper (Smiley et al., 1975). The sediments contain numerous ash beds, some of which have been correlated to tephra deposits of known ages, enabling the dating of the duration of the Clarkia Lake and deposition of the fossil beds to ~16–15.5 Ma, attesting that the bulk of CRBG volcanism took place prior to 15.5 Ma (Ladderud et al., 2015; Nash & Perkins, 2012). Recently, the exact dating of the Clarkia Lake sediment deposition has been narrowed down to ~15.9 Ma, using sanidine K/Ar and Ar/Ar dates (Geraghty, 2017), as well as U-Pb geochronology based on zircons (Kasbohm & Schoene, 2018), from volcanic ash deposits, intercalated with the basalt stratigraphy.

The Clarkia fossil flora is very diverse and abundant, including plentiful leaves as well as reproductive organs such as flowers, seeds, nuts, fruits and cones. The specimens are preserved essentially unaltered since burial in the unoxidized zone – retaining epidermal and mesophyll cellular detail, sometimes with the original autumn red or summer green chlorophyll coloring showing briefly upon exposure – whereas the oxidized zone preserves (sometimes exquisite) imprints only. The flora consists of numerous angiosperms, gymnosperms, as well as some ferns and bryophytes. The closest living plant relatives now occur in the southeastern USA and southern China, and the floral composition suggests that the temperate deciduous forest grew in a warm and humid climate, very different from northern Idaho today (Denk et al., 2011; Kvaček & Rember, 2000; Pinson et al., 2018; Rember, 1991; Smiley & Rember, 1981, 1985a; Smiley et al., 1975). This is independently supported by reconstructions of annual temperature and precipitation based on local contemporaneous paleosols (Hobbs & Totman Parrish, 2016).
The leaf fossils studied here derive from two localities in the unoxidized zone, the type locality and original discovery site P-33, cropping out at the ‘Fossil Bowl and racetrack’ locality, as well as P-37, located on the west fork of Emerald Creek (Fig. 1) (Rember, 1991; Smiley & Rember, 1975; 1985b). The full extent of the Clarkia sedimentary section is ~3700 cm at the more extensive site P-33, when calculated using common ash beds at both sites, with ~3200 cm stratigraphically logged in detail with drill cores at P-37 (Fig. 2) (Geraghty, 2017; Rember, 1991; Smiley & Rember, 1985b). P-37 crops out within the upper part of this range, to an approximate depth of 1400 cm. The P-33 outcrop is ~426 cm in extent and has been correlated using tephrostratigraphy to lie ~300 cm below the bottom of the P-37 outcrop, with the top at ~1700 cm depth in the drill core. However, the P-33 section is compressed to ~200 cm in the P-37 drill core (Geraghty, 2017). We therefore operate with two sedimentary logs for the outcrops, with the P-37 outcrop ranging 0–1400 cm and the P-33 outcrop ranging 0–426 cm (Fig. 2). Because of the different extent of the two sections, it is difficult to know the exact interval between P-37 and P-33, with the ~300 cm in the more compressed P-37 core being the minimum distance. The samples studied here derive from just above and below the pink ash bed at P-33 (Fig. 2), as well as from the top ~800 m at P-37.

2.2. Leaf sampling and analysis

Blocks of sediments were dug out of the cliff faces at each locality, and split open with knives to reveal fossil leaves, which were identified to lowest possible taxonomic level in the field and removed from the sediment surface (Fig. 3). Each leaf was stored individually between two acetate sheets, labelled with taxon and site information and stored in refrigerators prior to analysis. In the laboratory, the leaf cuticle abaxial surfaces were photographed at 200 × magnification to best capture the epidermal morphology, taking seven
evenly distributed photographs away from base, apex, midrib and margin (*sensu* Poole & Kürschner, 1999). The leaves were photographed untreated under an epifluorescent beam, using a Leica microscope with a mounted Leica camera (DF310 FX) and associated software (LAS v3.8). Images were then annotated with grids, delimiting areas of $300 \times 300 \mu m$, or $200 \times 200 \mu m$ in the case of small (and thus many) cells, and all the stomata as well as the epidermal cells within each of on average five grids per leaf were counted. In addition, stomatal pore lengths and guard cell widths were measured on ten stomata per leaf, all using the free software ImageJ (1.46 h; http://imagej.nih.gov/ij). The leaves were also sampled for $\delta^{13}C$ isotope analysis, which was performed at Iso-Analytical Limited laboratory in Crewe, Cheshire, UK. Finally, the leaves were stored individually in 5% HCl in plastic containers in the laboratory cold storage at the Swedish Museum of Natural History.

Following new protocols in paleo-pCO$_2$ reconstruction, only taxa represented by four or more specimens were included in the analyses (see e.g. Foster et al., 2017). P-33 offered the most abundant well-preserved leaves, in a total of five taxa: *Betula vera* (n=8), *B. fairii* (n=7), *Ostrya* sp. (n=4), *Quercus payettensis* (n=9) and Lauraceae (n=6). P-37 is represented by three taxa: *B. vera* (n=4), *B. fairii* (n=4), and *Q. payettensis* (n=18). Collected leaves within the genera *Betula* and *Quercus* that could not be identified to species level were excluded from the analyses. Lauraceae leaf and cuticle morphology however is very generalized and the leaves could not be assigned to lower taxonomic rank, which was also true for species within genus *Ostrya*. For sample images of the epidermal micromorphology of the studied leaves, detailed data on each individual leaf specimen, including stomatal density and index, measurements of pore length and guard cell width, as well as $\delta^{13}C$-isotope results, see supporting information Fig. S1 and Tables S1 to S4.
2.3. Paleo-pCO$_2$ reconstruction

For MCO pCO$_2$ reconstruction based on Clarkia fossil leaves, we used three stomatal proxy methods as well as a stomata-independent carbon isotope-based method for comparison. The stomatal proxy methods are based on the inverse relationship that exists between leaf stomatal densities ($SD = N_{stomata/mm^2}$) of most woody plants and atmospheric pCO$_2$ (Woodward, 1987). The change in stomatal densities is the morphological expression of plants’ physiological response aiming to maximize water use efficiency, i.e. to minimize water loss through transpiration when CO$_2$ is abundantly available in the atmosphere. Stomatal plant leaf density can also be quantified as the stomatal index (SI), where both stomata and epidermal cells are counted within the annotated grids and SI calculated as $SI(\%) = [SD / (SD + ED)] \times 100$ (where $ED = N_{epidermal cells/mm^2}$). SI is less affected than SD by additional environmental and physiological factors besides pCO$_2$, such as irradiance levels, moisture and leaf expansion (Salisbury, 1927). The stomatal proxy methods are by now well-established in the paleoclimate literature, having been applied to a plethora of plant taxa from a wide variety of geological, ecological and climatological backgrounds to reconstruct paleo-pCO$_2$ from the Paleozoic until today, generally showing remarkable inter-method consistency (e.g. Barclay & Wing, 2016; Grein et al., 2013; Kürschner et al., 2008; Li et al., 2019; Londoño et al., 2018; Mays et al., 2015; McElwain & Steinthorsdottir, 2017; Milligan et al., 2019; Montañez et al., 2016; Reichgelt et al., 2016; Royer et al., 2001; Steinthorsdottir & Vajda, 2015; Steinthorsdottir et al., 2011, 2013, 2016a, 2016b, 2019a, 2019b; Tesfamichael et al., 2017; Wagner et al., 1996; Zhou et al., 2020) and are considered one of four most useful proxies for paleo-pCO$_2$ (Beerling & Royer, 2011).

Three methods of stomatal proxy paleo-pCO$_2$ reconstruction are currently in use: 1) the empirical stomatal ratio method, which utilizes the ratio between the SD, or more usually SI, of fossil plants and the SD or SI of extant nearest living relatives or equivalents (NLR or
NLE), grown in known (measured) pCO_2, to estimate paleo-pCO_2 (McElwain, 1998; McElwain & Chaloner, 1995); 2) the also empirical transfer function method, which uses herbarium and/or experimental datasets of NLR/NLE responses to variations in pCO_2 to construct regression curves on which fossil SD or SI can be plotted to infer paleo-pCO_2 (e.g. Barclay & Wing, 2016; Kürschner et al., 2008); and 3) mechanistic gas exchange modelling, which is taxon-independent and based on morphological and plant physiological measurements as well as input of additional parameters, such as leaf $\delta^{13}C$ (e.g. Franks et al., 2014; Konrad et al., 2017). Here we used all three proxy methods – the stomatal ratio method with nine different NLE, four transfer functions and the Franks gas-exchange model – to obtain a robust pCO_2 reconstruction for the MCO, as detailed below (see sections 2.3.1-2.3.3). To test the stomatal proxy results, we additionally applied a stomata-independent method – the C3 proxy which utilizes fossil plant’s stable carbon isotope discrimination ($\Delta^{13}C$) to reconstruct paleo-pCO_2 (Schubert & Jahren, 2012; 2015, see section 2.3.4). For all four proxy methods confidence intervals were estimated using Monte Carlo error propagation (see section 2.3.5).

2.3.1. The stomatal ratio method

In the stomatal ratio method we employed the ratio between SI of the fossil plants and SI of the plant’s NLR or NLE, in relation to the ratio between the known pCO_2 (modern, measured) and paleo-pCO_2. The ratio between SI_{modern}/SI_{fossil} to $pCO_2_{fossil}/pCO_2_{modern}$ is assumed to be 1:1 (McElwain, 1998) and the stomatal ratio calibration is expressed by the equation:

$$pCO_2_{paleo} = \frac{SI_{NLE}}{SI_{fossil}} \times pCO_2_{modern}.$$ (1)
We used several previously published SI-\(pCO_2\) couples for each of the major groups, including \(B. \) pendula and \(B. \) luminifera (Kürschner, 1997; Sun et al., 2012; Wagner, 1998; Wagner et al., 1996) for the Betulaceae (including Betula vera, \(B. \) fairii and Ostrya sp.). Of these, we consider \(B. \) luminifera to be the best NLE for the Betulaceae studied here, based on both morphology of the leaves and their ecological preference for temperate to subtropical climate (Sun et al., 2012). \(B. \) pendula is morphologically a good NLE, but prefers colder climate – however, we include it here to better capture variance in SI response within the genus. \(B. \) luminifera SI has been reported as 10.7% at 390 ppm \(pCO_2\) (Sun et al., 2012, their Fig. 5b), and \(B. \) pendula SI at 7–8.5% at 360 ppm \(pCO_2\) (Kürschner, 1997; Wagner, 1998; Wagner et al., 1996).

For \(pCO_2\) reconstruction based on Clarkia Quercus payetensis, we use published SI-\(pCO_2\) values based on the NLE species \(Q. \) robur, \(Q. \) petra and \(Q. \) nigra (Beerling & Chaloner, 1993; van Hoof et al., 2006; Wagner et al., 2005). A combined \(Q. \) robur/\(Q. \) petra dataset recorded SI of ~19% at 280–300 ppm (van Hoof et al., 2006), with an independent \(Q. \) robur study recording SI of ~21% at 345 ppm (Beerling & Chaloner, 1993). A third study recorded SI-\(pCO_2\) couples of 22% at 320 ppm and 19.5% at 360 ppm for \(Q. \) nigra (Wagner et al., 2005).

For the Lauraceae dataset, the four species Litsea sebifera, \(L. \) fuscata, \(L. \) stocksii and Laurus nobilis were chosen as NLE (Kürschner et al., 2008; McElwain, 1998). The three \(Litsea\) subtropical–tropical south-east Asian and Indo-Malaysian rainforest tree species are the better NLE for the Miocene Lauraceae studied here and have previously been used in the stomatal ratio method reconstructing paleo-\(pCO_2\) for the similarly warm Cenozoic interval the Eocene (McElwain, 1998; Steinthorsdottir et al., 2019a), with \(SI_{NLE}\) being 19% for \(L. \) glutinosa, 18.3% for \(L. \) fuscata and 14.4% for \(L. \) stocksii at 360 ppm \(pCO_2\) (see McElwain, 1998). The evergreen Mediterranean species \(L. \) nobilis was originally assigned as NLE for
the extinct Neogene European species *Laurus abchasica* for a Miocene paleo-\(p\text{CO}_2\) reconstruction (Kürschner et al., 2008; Kürschner & Kvaček, 2009), with \(SI_{NLE}\) of 16.37–20.32% at 300 ppm. It may not be the most fitting NLE for the North American Miocene Lauraceae studied here, but we chose to include it both in the stomatal ratio and transfer function methods for easier comparison to previously published Cenozoic \(p\text{CO}_2\) values (Kürschner et al., 2008; Steinthorsdottir et al., 2016b, 2019a, 2019b), considering it essentially as a standardized Lauraceae. Stomatal Index data is provided in Table S1.

2.3.2. Transfer functions

For the Betulaceae group, we used two transfer functions, the first one based on *Betula luminifera* (Sun et al., 2012):

\[
p_{\text{CO}_2\text{paleo}} = \frac{(SI - 20.58)}{-0.026}
\]

For comparison, we use a second transfer function based on a mixed data base of *Betula pubescens* and *B. nana* (Finsinger & Wagner-Cremer, 2010):

\[
p_{\text{CO}_2\text{paleo}} = 10^{(2.8687 - (0.357 \times \log (SI_{fossil})))}
\]

For *Q. payetensis*, we used a transfer function based on *Q. robur* (Garcia-Amorena et al., 2006).

\[
p_{\text{CO}_2\text{paleo}} = -6.25 \times (SI_{fossil} - 71.09)
\]
For the Lauraceae dataset, we used the transfer function of Kürschner et al. (2008) constructed for Miocene extinct Lauraceae, based on the extant species *Laurus nobilis* calibrated from a set of historical herbarium leaves, with an added correction factor of 150 ppm, since the leaves systematically underestimated pCO_2 (see Kürschner et al., 2008 for details):

$$pCO_2_{\text{paleo}} = 10^{(3.173 - (0.5499 \times \log (SI_{\text{fossil}}))) + 150}$$ \hspace{1cm} (6)

2.3.3. Gas-exchange modeling

The 'Franks' gas-exchange model (Franks et al., 2014) is based on the simple and thoroughly tested Farquhar model for C3 photosynthesis, where the rate of carbon assimilation equals the product of total leaf conductance to CO$_2$ and the concentration gradient of atmospheric-to-leaf-internal CO$_2$ (Farquhar & Sharkey, 1982). The carbon isotope discrimination during photosynthesis ($\Delta^{13}C$) is also used to reconstruct the ratio of leaf-internal-to-atmospheric pCO_2 (c_l/c_a) and is determined based on measurements of plant tissue carbon isotope composition ($\delta^{13}C$) as well as an estimate of paleo-atmospheric CO$_2$ $\delta^{13}C$ (here −5.3 ‰ for the MCO; Tipple et al., 2010). The Franks model thus consists of two interwoven principal equations which are solved iteratively for the two unknown factors paleo-photosynthetic rate and paleo-atmospheric pCO_2:

$$C_a = pCO_2_{\text{paleo}} = A_n/ (g_{c(op)}(1 - c_l/c_a))$$ \hspace{1cm} (7)

where A_n is the net rate of CO$_2$ assimilation by leaves (μmol m$^{-2}$ s$^{-1}$), $g_{c(op)}$ is the operational conductance to atmospheric CO$_2$ diffusion to photosynthesis sites within the leaf (mol m$^{-2}$ s$^{-1}$), which is determined by the stomatal dimension measurements: guard cell width and
stomatal pore length (GCW, PL). Key input parameters derive from stomatal morphology and carbon isotopic composition measurements on fossil leaf tissue, as well as from gas-exchange measurements on extant plants. The first of the iteratively solved equations is the Farquhar model, where total leaf conductance to $p\text{CO}_2$ is determined mostly by SD, GCW and PL. The second equation, derived from an expression for Ru-BP regeneration-limited photosynthesis (Farquhar et al., 1980), describes the long-term change in photosynthetic rate due to changing atmospheric CO_2 concentration relative to known values in a nearest living relative plant. For all other input parameters for the model we use the generic values recommended by Franks et al. (2014). This includes the angiosperm $A_n (=A_0)$, since it is based on measurements of modern and Miocene Betula and Quercus, which is highly appropriate for our database. Input data for the Franks model are provided in Table S2.

In a second separate run of the Franks model we use an updated $s4$ scaling (ratio of operating to maximum stomatal conductance) of 0.26 ± 0.11, based on a recently updated assessment of this across numerous woody angiosperm (Murray et al., 2019) (see Table S3 for input data).

In a third run, we used a phylogenetic correction factor for plant tissue δ^{13}C as suggested by Porter et al. (2017) which has recently been applied to the Franks model (Porter et al., 2019). This correction is intended to improve the convergence of $p\text{CO}_2$ estimates generated from different plant clades, and for angiosperms Porter et al. (2017) recommended a correction of $-2.31\%o$ (see Table S4 for input data).

2.3.4. C3 plant proxy modelling

The empirical $p\text{CO}_2$ proxy model proposed by Schubert and Jahren (2012, 2015) is based on the relationship between $p\text{CO}_2$ and the stable carbon isotope discrimination (Δ^{13}C) of plant
tissue; $\Delta^{13}C$ is then used to back-calculate the concentration of CO_2 in the past. The model is based on the observed hyperbolic relationship between $\Delta^{13}C$ and pCO_2:

$$\Delta^{13}C = \frac{(A)(B)(pCO_2 + C)}{[A + B \times (pCO_2 + C)]}$$ (8)

Where A, B and C are curve-fitting parameters (see Schubert & Jahren, 2012 for details). The equation was constructed based on only two angiosperm species but has since been updated (Cui & Schubert, 2016; Schubert & Jahren, 2015). Because absolute $\Delta^{13}C$ values are variable among plants grown in the same conditions, the C3 proxy is calculated using the change in $\Delta^{13}C$ relative to a reference time interval (Cui & Schubert, 2016; Schubert & Jahren, 2015). Here, we follow Schubert and Jahren (2015) and Cui and Schubert (2016) in using the Holocene average pCO_2 and $\Delta^{13}C$ as reference input conditions, using the values provided in Cui and Schubert (2016). The model has produced results that are in reasonably good agreement with other proxy methods (Cui & Schubert, 2016), but needs to be further constrained to avoid producing unrealistic (e.g. negative) pCO_2 values (Porter et al., 2019), or pCO_2 estimates with high uncertainty (Konrad et al., 2020; Lomax et al., 2019). In an independent validation of the C3 proxy, Lomax et al. (2019) demonstrated that due to the impact of moisture availability on $\Delta^{13}C$ pCO_2 was underestimated in dryer conditions; this effect was particularly pronounced at $pCO_2 \leq 1500$ ppm. The stronger control of moisture availability on $\Delta^{13}C$ relative to pCO_2 has also been noted in other studies (e.g., Kohn, 2016; Konrad et al., 2020; Schlanser et al., 2020). Since moisture availability is itself linked to factors such as precipitation, temperature and salinity (Lomax et al., 2019), these results suggest that a range of environmental parameters could independently influence $\Delta^{13}C$ and therefore estimated pCO_2. However, since the Clarkia paleoenvironment is not thought to have been strongly water-limited we include this proxy here as a comparison with the stomata-based pCO_2 estimates. $\delta^{13}C$ data is provided in Table S1.
2.3.5 Monte Carlo error propagation

Here, we have followed previous studies (e.g. Cui & Schubert, 2016; Franks et al., 2014; Royer et al., 2014) in using Monte Carlo error propagation to generate confidence intervals on the \(p_{\text{CO}_2} \) estimates. In this approach, rather than simply using the mean of measured parameters (e.g., SD or GCW) to calculate the variable of interest, distributions representing those parameters (usually normal distributions defined by the mean and standard deviation or standard error of the measurements and model coefficients) are repeatedly resampled and those values used in the proxy calculations (Cui & Schubert, 2016). This generates a distribution of \(p_{\text{CO}_2} \) estimates that are consistent with the error distributions of the initial measurements/coefficients. From this distribution the median can be taken as the \(p_{\text{CO}_2} \) estimate, and percentiles of the distribution used to define confidence intervals, typically the 16\(^{th}\) and 84\(^{th}\) percentiles to define a 68% confidence interval, or the 2.5\(^{th}\) and 97.5\(^{th}\) percentiles to define a 95% confidence interval (Cui & Schubert, 2016; Royer et al., 2014) (Tables S5 and S6).

For each proxy model run we used 10000 sets of randomly generated input values to calculate 10000 \(p_{\text{CO}_2} \) estimates. For the Franks model (Franks et al., 2014), the R code provided with the paper includes Monte Carlo error propagation, and returns the resampled \(p_{\text{CO}_2} \) estimates as well as a summary of the distributions and other calculated parameters. Monte Carlo error propagation was also employed by Cui and Schubert (2016) for the C3 proxy (Schubert & Jahren, 2012, 2015), and we follow the same approach here. For both the stomatal ratio and transfer function methods we have written new resampling routines in R (R Core Team, 2018) that incorporate the error in both the fossil and NLR/NLE SI measurements. For the transfer functions we use in this study, standard errors for the regression coefficients (intercept and slope) were not provided in the original publications, and so could not be incorporated into the Monte Carlo resampling. However, in both Sun et
al. (2012) and Kürschner et al., (2008) the underlying SI and pCO_2 data were provided. We therefore refit these regressions, extracted the model coefficient standard errors, and re-ran the Monte Carlo error propagation to provide a comparison with the results based on just the standard error of the SI measurements. The full results of these additional analyses are provided in Table S7. We have used standard errors rather than standard deviations to define the distributions for resampling, because this better captures repeated resampling of mean stomatal parameters from a statistical population, rather than the resampling of individual measurements that using standard deviations would simulate. After each Monte Carlo run we first removed any invalid pCO_2 estimates (i.e., those < 0 or $> 10^6$ ppm), and then used the $16^{th}/84^{th}$ and $2.5^{th}/97.5^{th}$ percentiles to define 68% and 95% confidence intervals around the median value (the 50^{th} percentile, which typically closely approximates the pCO_2 estimate that would be produced by the proxy without Monte Carlo resampling). We calculated the median pCO_2 plus confidence intervals for each leaf specimen (Table S5), for each taxon within each locality (Table S6), and within each locality to provide overall within-locality pCO_2 estimates. In the main paper we report the within-taxon and within-locality pCO_2 estimates, using 95% confidence intervals because this is the usual confidence level employed to assess statistical significance and compare among estimated parameters. The specimen-level pCO_2 estimates are given in the supporting information, along with the 68% confidence intervals to provide a direct comparison with other studies (e.g. Cui & Schubert, 2016; Franks et al., 2014; Londoño et al., 2018; Porter et al., 2019; Tesfamichel et al., 2017) (see Tables S5 and S6). The R code, which includes the Monte Carlo input values, is provided in the supporting information.
3 Clarkia MCO pCO_2 reconstructions

In our quest to robustly reconstruct MCO pCO_2, we used a multi-taxon database of fossil leaves collected from a well-dated sedimentary section, and preformed multiple independent pCO_2 reconstructions – using the stomatal ratio method with 10 distinct SI-NLE pairs; four transfer functions; the Franks gas exchange model, both the original version and with two separate correction factors; as well as the C3 proxy. Using the selection of published NLE SI-pCO_2 relationships applied to our five taxa in the stomatal ratio method, this translates to a locality average pCO_2 of 476 ppm (within-taxon median range of 402–568 ppm) at P-37 and 539 ppm (within-taxon median range of 411–614 ppm) at P-33 (Table 1, Fig. 4). None of the Monte Carlo pCO_2 estimates were <0 or >10^6 ppm.

The transfer function approach, using previously published transfer functions applied to our five taxa, records similar pCO_2 as the stomatal ratio method, although appreciably lower (Table 1). A median pCO_2 of 364 ppm is recorded at P-37 (within-taxon median range of 356–473 ppm and ~468 ppm (within-taxon median range of 370–490 ppm) at P-33 (Fig. 4). None of the Monte Carlo pCO_2 estimates were <0 or >10^6 ppm. Additional Monte Carlo analyses on two of the transfer functions, incorporating standard errors on the regression coefficients as well as the SI measurements, suggest that the 95% confidence intervals reported here underestimate the true confidence intervals by 30–80% (further details are provided in Table S7).

Using the Franks model for pCO_2 reconstruction (Franks et al., 2014) in its original form with our chosen input parameters (see methods section and Table S2) the three taxa at P-37 record median pCO_2 ranging from ~456–491 ppm, with a locality median pCO_2 of 479 ppm. Median pCO_2 for the five taxa at P-33 ranges between a minimum of 364 ppm and a maximum of 609 ppm, with a locality median pCO_2 of 548 ppm (Table 1, Fig. 4). None of the
Monte Carlo pCO_2 estimates were <0 or $>10^6$ ppm. Applying the ‘Murray correction’ (see methods, Table S3 and Murray et al., 2019) to the Franks model, a of median pCO_2 is recorded ranging from 389 ppm to 464 ppm at P-37 and 365 ppm to 554 ppm at P-33 (Table 1, Fig. 4). The locality medians recorded using the Murray correction factor are lower than for the original input ratio used in the Franks model, with pCO_2 of 405 ppm for P-37 and 480 ppm for P-33. The spread of pCO_2 estimates was larger than with the uncorrected Franks model, with 5 values $>10^6$ ppm and 5103 values <0 ppm; these were removed before the median and percentiles were calculated. When applying the ‘Porter correction’ (see methods, Table S4 and Porter et al., 2017) to the Franks model, significantly higher pCO_2 is recorded, with a range of 675–776 ppm and a locality median of 738 ppm at P-37, and 561–988 ppm, median 882 ppm at P-33 (Table 1, Fig. 4). As with the uncorrected Franks model, no invalid pCO_2 estimates were produced.

The C3 proxy, which is independent from stomatal parameters (see methods and Schubert & Jahren, 2012; 2015), records median within-taxon pCO_2 ranging from 471 ppm to 601 ppm at P-37, with a locality median of 529 ppm (Table 1, Fig. 4). At P-33, higher values of pCO_2 are recorded, between 575 ppm and 624 ppm, with a locality median of 603 ppm. The C3 proxy generated 8 pCO_2 estimates $>10^6$ ppm and 2811 estimates <0 ppm, which were removed prior to calculating the median and percentiles of the distribution.

Summarizing the results, an obvious pattern is that the majority of the pCO_2 reconstructions are considerably lower than the ~800 ppm believed to be necessary to reproduce MCO temperatures (Fig. 4, Goldner et al., 2014), even taken the errors into account, which are quite extensive for many of the proxies. Most median pCO_2 estimates
converge around close to 450–550 ppm. Another clear feature is that median pCO$_2$ is consistently higher at P-33, the older locality, than it is at the younger locality P-37.

4 Discussion

The stomatal index and gas exchange based methods (with the exception of Franks + Porter) recorded remarkably similar pCO$_2$, as has previously been shown to be the case in numerous studies (see e.g. McElwain & Steinthorsdottir, 2017; Montañez et al., 2016; Steinthorsdottir et al., 2019a; Zhou et al., 2020). The transfer function approach on the other hand recorded consistently lower pCO$_2$ than the other proxies, a phenomenon that has also been previously observed (Kürschner et al., 2008; Steinthorsdottir et al., 2016b, 2019a, 2019b). The stomata-independent C3 proxy recorded higher pCO$_2$ on average than the stomata-dependent methods, but still sufficiently similar to be regarded as independently supporting the stomata proxy results (Fig. 4).

The 95% confidence intervals on our pCO$_2$ estimates are derived from Monte Carlo error propagation. As such they represent an honest accounting of the errors on the measurements and model parameters that underpin the different proxies, and allow us to assess robustly how consistent our data are with different pCO$_2$ scenarios. The stomatal ratio, transfer function and Franks model pCO$_2$ estimates all have confidence intervals that either do not overlap, or overlap only slightly, with the 800 ppm pCO$_2$ that is required by climate simulations to produce MCO temperatures (Goldner et al., 2014). Therefore, even with full error propagation the results from these proxies are not consistent with such highly elevated pCO$_2$ levels. The Murray correction to the Franks model results in a skewed distribution with a long tail of high of pCO$_2$ estimates that extend well beyond 800 ppm (Fig. 4), despite having a lower median than the uncorrected Franks model. The right skewed distribution is
likely to be in part a result of the removal of the high number of negative pCO$_2$ estimates prior to calculating the distribution percentiles: of 61000 resamples (61 samples x 10000 Monte Carlo resamples) 5103 or 8.4% were negative. Our results therefore suggest that applying the Murray correction to the Franks model amplifies the variability in the underlying measurements to the point where a high proportion of invalid pCO$_2$ values are produced and the final pCO$_2$ estimate has a low precision. The C3 proxy resulted in 2811 or 4.6% negative resamples, and has an even more pronounced right skewed distribution that incorporates a range of unrealistic pCO$_2$ estimates for the mid-Miocene (i.e. up to ~2600 ppm for site P-33, see Fig. 4). Such wide confidence intervals appear to be a general issue with the C3 proxy, when calculated relative to the Holocene reference and with Monte Carlo error propagation (Lomax et al., 2019). We therefore consider these high values to be properties of the underlying proxies, rather than reasonable pCO$_2$ expectations for the MCO, and suggest that further corrections may be required to increase the precision of these models.

The one exception to our pCO$_2$ proxy reconstructions is the Franks model with the Porter correction, which places pCO$_2$ at ~800 ppm. While this is consistent with the modeled pCO$_2$ necessary to simulate MCO temperatures (Goldner et al., 2014), we consider these estimates to be erroneously high given the results from the other proxies, including those that are based solely on SI and therefore cannot be biased by δ^{13}C measurements. This suggests that the correction to δ^{13}C suggested by Porter et al. (2017) to account for phylogenetic offsets among major plants clades leads to overestimated pCO$_2$ when applied to angiosperms. As noted by Porter et al. (2017, 2019), this is a post-hoc correction that has been developed from plants grown in experimentally controlled, growth-room conditions, and it may be that these do not successfully translate across to plants that existed in natural habitats (Lomax et al., 2019). Our results also illustrate the general point that a correction to make pCO$_2$ estimates from different plant groups converge better does not necessarily mean that they will
converge at the right level. However, we fully acknowledge that our results only pertain to one plant clade (angiosperms) from one time and place, and that this does not rule out the need for such correction factors or contradict the values put forward by Porter et al. (2017) for gymnosperms or spore producing plants. For future studies it will be useful to investigate several different plant clades, including both spore and seed producing plants, from the same deposits, and compare pCO_2 estimates from multiple proxies (including those that do not rely on $\delta^{13}C$). This will allow phylogenetic $\delta^{13}C$ offsets to be assessed in ‘natural’ conditions, and will enable a better understanding of how these offsets impact on multi-taxon pCO_2 reconstructions, both from taxa co-occurring in the same deposits and when individual measurements are compiled into long timeseries (e.g. Porter et al., 2019).

An interesting feature of the dataset is the consistent difference in pCO_2 recorded between the two localities, with higher pCO_2 recorded by all taxa and all proxies at the older P-33 compared to the younger P-37. Although this cannot be shown in a robust statistical sense and might be the result of random sampling variation, it is noteworthy that the offset is consistent across the different proxies (whether they use SI, $\delta^{13}C$, or both). The Clarkia Lake was formed when a CRBG flow, in connection with a volcanic eruption and thus CO2 outgassing, dammed a valley river (Kasbohm & Schoene, 2017; Smiley & Rember, 1985b; Yang et al., 1995), and it is possible, perhaps even likely, that pCO_2 was indeed higher closer in time to this damming event, when P-33 sediments were being deposited. It would be highly beneficial to our understanding of Earth system processes to be able to record in detail the behavior of the carbon cycle during volcanic emplacement and further studies are underway at the Clarkia localities to construct more high-chronological resolution fossil leaf databases to test this.

Comparing the results presented here with previously published MCO pCO_2 records, most of which record pCO_2 around or even considerably lower than ~400–450 ppm during
the MCO (Badger et al., 2013; Beerling et al., 2009; Breecker & Retallack, 2014; Foster et al., 2012; Greenop et al., 2014; Grein et al., 2013; Ji et al., 2018; Retallack, 2009; Royer, 2003; Royer et al., 2001; Zhang et al., 2013), the new multi-method, multi-taxon Clarkia pCO$_2$ record slightly corrects these estimates upwards, supporting the results of Kürschner et al. (2008), who reported MCO pCO$_2$ of up to ~550 ppm. Considering the confidence intervals, MCO pCO$_2$ presented here may also have been lower (down to ~350 ppm), but given the mutually-supporting convergence of most of the proxies around median values of ~450–550 ppm, as well as the consistently high temperatures recorded by numerous proxies, we consider this higher interval to be a more likely scenario.

5 Conclusions

The multi-method, multi-taxon pCO$_2$ reconstruction presented here indicates that pCO$_2$ was moderately elevated at ~450–550 ppm during the MCO. These results are somewhat higher than most previously published pCO$_2$ records, which generally report pCO$_2$ <450 ppm (see Foster et al., 2017), but still considerably lower pCO$_2$ than climate modelling requires to reproduce MCO temperatures (Goldner et al., 2014). This indicates that climate sensitivity must have been elevated during the MCO, leading to highly elevated temperatures at moderately elevated pCO$_2$. With 415 ppm measured for the first time in spring 2019 (NOAA data at esrl.noaa.gov), and with no sign yet of decreasing emissions, we are fast approaching MCO-level pCO$_2$. The race is now on to improve our knowledge of the Earth system in order to understand whether such moderate levels of pCO$_2$ may also cause a devastating temperature increase of up to 7 °C in the (near?) future, and if so, take action to prevent it.
Acknowledgments, Samples, and Data

We thank H. K. Coxall and P. Pearson for assistance in the field, and C. Geraghty, W.M. Kürschner, C.A. E. Strömberg, B. Lomax and M. Huber for helpful discussions. Special thanks to M. J. Kohn for suggesting studying the Clarkia fossils to M. S. The fossil leaf database is stored at the Department of Palaeobiology, Swedish Museum of Natural History. All data and proxy model inputs are available in the supporting information and in the Bolin Centre for Climate Research (Stockholm University) database:

https://doi.org/10.17043/steinthorsdottir-2020

The authors declare no conflict of interest.

References

CO₂ glacial periods and implications for the phytoplankton pCO₂ proxy. *Quaternary Science Reviews*, 208, 1-20.

Table 1. pCO$_2$ reconstruction summary results for each taxon within each of the two Clarkia localities, derived from Monte Carlo error propagation. SD = stomatal density and SI = stomatal index. For each of the six proxies, the pCO$_2$ estimate is provided as well as the lower and upper bounds of a 95% confidence interval.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Taxon</th>
<th>SD (N/mm2)</th>
<th>SI (%)</th>
<th>Stomatal ratio</th>
<th>Transfer function</th>
<th>Franks model</th>
<th>Franks + Murray</th>
<th>Franks + Porter</th>
<th>C3 Proxy</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-37</td>
<td>B. vera</td>
<td>314$^{±1}$</td>
<td>6.0$^{±0.6}$</td>
<td>568</td>
<td>473</td>
<td>456</td>
<td>422</td>
<td>675</td>
<td>471</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(468/722)</td>
<td>(443/515)</td>
<td>(358/620)</td>
<td>(310/1080)</td>
<td>(518/984)</td>
<td>(234/1514)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. fairii</td>
<td>401$^{±3}$</td>
<td>8.5$^{±0.8}$</td>
<td>402</td>
<td>402</td>
<td>491</td>
<td>464</td>
<td>776</td>
<td>601</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(353/493)</td>
<td>(373/445)</td>
<td>(405/715)</td>
<td>(353/1181)</td>
<td>(625/1207)</td>
<td>(290/2496)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q. payettensis</td>
<td>816$^{±2}$</td>
<td>14.3$^{±2.0}$</td>
<td>474</td>
<td>356</td>
<td>481</td>
<td>389</td>
<td>739</td>
<td>526</td>
</tr>
<tr>
<td>Locality:</td>
<td></td>
<td>476</td>
<td>364</td>
<td>479</td>
<td>405</td>
<td>738</td>
<td>529</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(352/651)</td>
<td>(352/717)</td>
<td>(352/950)</td>
<td>(508/1182)</td>
<td>(254/1938)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-33</td>
<td>B. vera</td>
<td>278$^{±6}$</td>
<td>6.0$^{±1.0}$</td>
<td>559</td>
<td>470</td>
<td>609</td>
<td>554</td>
<td>988</td>
<td>612</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(446/807)</td>
<td>(425/533)</td>
<td>(456/825)</td>
<td>(381/1561)</td>
<td>(682/1406)</td>
<td>(284/2826)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. fairii</td>
<td>314$^{±3}$</td>
<td>6.3$^{±1.6}$</td>
<td>566</td>
<td>473</td>
<td>564</td>
<td>528</td>
<td>920</td>
<td>624</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(400/834)</td>
<td>(402/538)</td>
<td>(422/1007)</td>
<td>(366/1594)</td>
<td>(650/1662)</td>
<td>(293/2768)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ostrya sp.</td>
<td>311$^{±5}$</td>
<td>6.0$^{±1.0}$</td>
<td>614</td>
<td>488</td>
<td>537</td>
<td>498</td>
<td>830</td>
<td>577</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(446/755)</td>
<td>(425/523)</td>
<td>(415/793)</td>
<td>(359/1356)</td>
<td>(642/1320)</td>
<td>(282/231)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Q. payettensis</td>
<td>760$^{±1}$</td>
<td>12.0$^{±2.4}$</td>
<td>560</td>
<td>370</td>
<td>535</td>
<td>430</td>
<td>870</td>
<td>609</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(419/751)</td>
<td>(345/389)</td>
<td>(400/748)</td>
<td>(321/929)</td>
<td>(607/1241)</td>
<td>(288/2569)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lauraceae</td>
<td>723$^{±2}$</td>
<td>14.5$^{±2.1}$</td>
<td>411</td>
<td>490</td>
<td>364</td>
<td>365</td>
<td>561</td>
<td>575</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(352/570)</td>
<td>(465/556)</td>
<td>(301/618)</td>
<td>(277/831)</td>
<td>(433/1170)</td>
<td>(259/2768)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Locality:</td>
<td></td>
<td>539</td>
<td>468</td>
<td>548</td>
<td>480</td>
<td>882</td>
<td>603</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(361/797)</td>
<td>(348/543)</td>
<td>(323/848)</td>
<td>(306/1298)</td>
<td>(477/1413)</td>
<td>(281/2675)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 1. The Clarkia fossil lagerstätte deposits. A map of the Miocene Clarkia Lake, near the town of Clarkia, Idaho (yellow star), with the two fossil localities studied here, P-33 and P-37, marked with red hexagons. Adapted after Geraghty (2017), and Smiley and Rember (1975).
Figure 2. Stratigraphy of the Clarkia fossil lagerstätte deposits. The relative stratigraphic position of the sedimentary outcrops at localities P-33 and P-37 are indicated, as well as the P-37 core, establishing the depth of the section. Ash layers used for tephrostratigraphic correlation indicated with multi-colored lines. Adapted after Geraghty (2017).
Figure 3. **Fossil leaves from Clarkia.** Two fossil leaves demonstrating the exquisite preservation of the Clarkia flora. A) A Lauraceae leaf, newly excavated in the field, showing the original red autumn color, B) *Ostrya* sp. leaf specimen between two acetate sheets, ready for analysis in the laboratory.
Figure 4. Clarkia MCO pCO$_2$ reconstruction results plotted for each proxy method at both localities, P-37 and P-33. SR = stomatal ratio, TF = transfer functions. Error bars show the 95% confidence interval. Red dashed line at 800 ppm illustrates the pCO$_2$ necessary to reproduce MCO temperatures in climate models (Goldner et al., 2014). Most reconstructed median pCO$_2$ plot in the 450–550 ppm interval.