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Mountain regions contain extraordinary biodiversity. The environmental het-
erogeneity and glacial cycles often accelerate speciation and adaptation of
montane species, but how these processes influence the genomic differen-
tiation of these species is largely unknown. Using a novel chromosome-
level genome and population genomic comparisons, we study allopatric
divergence and selection in an iconic bird living in a tropical mountain
region in New Guinea, Archbold’s bowerbird (Amblyornis papuensis). Our
results show that the two populations inhabiting the eastern andwestern Cen-
tral Range became isolated ca 11 800 years ago, probably because the suitable
habitats for this cold-tolerating bird decreased when the climate got warmer.
Our genomic scans detect that genes in highly divergent genomic regions are
over-represented in developmental processes, which is probably associated
with the observed differences in body size between the populations. Overall,
our results suggest that environmental differences between the eastern and
western Central Range probably drive adaptive divergence between them.
1. Introduction
Mountain regions are among the biologically richest areas in the world and of
great importance for conservation [1,2]. This extraordinary biodiversity is even
more accentuated in tropical mountains where long-term climatic changes
interacting with the heterogeneous topography provide multiple opportunities
for speciation and adaptation [3,4]. Consequently, tropical mountains house a
larger number of restricted-range, ecological specialists than do temperate
mountainous regions [4,5]. During the Pleistocene, glacial cycles further accel-
erated the diversification of mountain species as the climate changes pushed
habitats and their inhabitants up and down along elevational gradients [6].
In warmer periods, species may have been split into several ‘sky island’ popu-
lations [7,8] as they became isolated at mountaintops surrounded by
unfavourable habitats. Understanding how ‘sky island’ diversifications influ-
ence the genomic landscape and divergent adaptations is important for
determining future conservation measures in these species, not least at a time
when the global loss of biological diversity is accelerating (e.g. [9]).

Herein we address genomic divergence and adaptation in Archbold’s
bowerbird Amblyornis papuensis, Ptilonorhynchidae (nomenclature follows
[10]), supposedly one of the rarest birds in New Guinea [11]. It inhabits frost-
prone high mountains at elevations between 2300 and 3660 m, higher than
most birds in New Guinea [12–14]. It is resident and divided into two geo-
graphically isolated and sedentary populations (sanfordi in the eastern Central
Range and papuensis in the western Central Range) that differ in size and plumage
colour [14]. Constituting a classic ‘sky island’ species, A. papuensis provides
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unique opportunities to study the genomic signature of local
adaptations in allopatric populations. In the study, we gener-
ated a nearly chromosome-level genome of a closely related
species, southern white-eared catbird Ailuroedus stonii, and
studied comparative population genomics of A. papuensis.
We expect to find that the two populations have diverged
during a warm interglacial period and subsequently
decreased their population sizes when they retreated to
higher elevation. We hypothesize that the populations have
evolved genomic adaptations in response to the different
environmental pressures in their respective ‘sky island’
region. Our study provides novel insights into how the Late
Pleistocene climate and environmental heterogeneity of tropi-
cal mountains contributed to the rapid adaptive divergence
between ‘sky island’ populations.
 Lett.17:20210089
2. Material and methods
(a) De novo genome and resequencing data generation
We generated a nearly chromosome-level genome of the closely
related A. stonii (see the electronic supplementary material for
specimen details). We sequenced paired-end (180 bp), mate-
pair (3 and 5–8 kb) and 10× genomics chromium libraries,
using Illumina HiSeq X by Science for Life Laboratory (National
Genomics Institute, Stockholm). We assembled the genome using
ALLPATHS_LG [15] and further improved it by Hi-C sequencing
and using the HiRise assembly pipeline (Dovetail Genomics
[16]). In total, we obtained 218 Gb data. We extracted DNA
from toepads of eight taxonomically well-identified and vou-
chered museum study skins of A. papuensis collected between
1938 and 1961 with Illumina NovaSeq 6000 (electronic sup-
plementary material, table S1). We deleted 5 bp from both ends
of cleaned reads to reduce ‘noise’ caused by DNA degradation
(a standard procedure for museum specimens [17]). We used
BWA mem v. 0.7.12 [18] to map the clean reads against the 23
largest scaffolds, which cover 97% of the A. stonii genome. We
called single nucleotide polymorphisms (SNPs) using mpileup in
SAMTOOLS v. 1.4 [19], applying a minimum genotype quality of 10.
(b) Population structure
Phylogenetic relationships were inferred by analysing 80 157 ran-
domly drawn SNPs with SNAPP v. 1.3.0 in BEAST2 v. 2.4.8
[20,21]. We chose uninformative distributions as priors, sampled
mutation rate from an inverse gamma distribution, used a Yule
prior for species tree, and set the lambda parameter to a uniform
distribution (0–1). We ran the analysis for 2 000 000 iterations (the
first 200 000 was discarded as burn-in). Convergence of the
Markov chain Monte Carlo chains was assessed by checking
that effective sample size values exceeded 200. We plot trees in
the posterior sample using DENSITREE v. 2.1.11 [22]. We estimated
genetic population structure with principal component analysis
(PCA) using smartpca in EIGENSOFT v. 6.1.4 [23].
(c) Demographic history
To estimate historical demography, we applied FASTSIMCOAL v. 2.6
[24] to a two-dimensional, unfolded site frequency spectrum gen-
erated from a 76 Mb genomic region containing none of the 5%
most highly divergent windows. We kept monomorphic sites
and used the reference genome to polarize ancestral states.
Four demographic models were tested: no decrease of popu-
lation sizes after they split and no gene flow between them
(M1); no decrease of population sizes but gene flow occurring
(M2); changes of population sizes after they split but no gene
flow (M3); changes of population sizes and gene flow occurring
(M4) (electronic supplementary material, figure S1).

Akaike information criterion (AIC) [25] was used to select
which model fit observed data best. For the best-fit model, we
ran 1000 replicates, each including 20 estimation loops with
200 000 coalescent simulations. We calculated statistics for
demographic parameters based on the 5% most likely runs.

We used POPSIZEABC [26] to estimate temporal fluctuations
in population size. We set the recombination rate to 1.0 × 10−8,
mutation rate to 4.6 × 10−9 per generation and a generation
time of 5.35 years [27–29]. Summary statistics of the allele fre-
quency spectrum and linkage disequilibrium were calculated at
21 discrete time windows (2400–130 000 years) based on the
empirical dataset and then compared with the corresponding
statistics calculated from 400 000 simulated datasets.

(d) Environmental heterogeneity analysis
We tested environmental heterogeneity using 19 bioclimatic vari-
ables obtained for 1939 and 2938 randomly sampled sites at
2600–2800 m.a.s.l. within the core-distributions (as determined
from [12–14]) of the western and eastern populations in World-
Clim v. 2.1 database [30] (see the electronic supplementary
material). We performed PCA on the Z-transformed dataset in
R ( prcomp) and used two-tailed t-tests to test for significance in
both the 19 bioclimatic variables and the principal components.

(e) Selection analysis
The landscape of genomic divergence between the two popu-
lations was estimated by calculating FST and DXY values in non-
overlapping 50 kb windows (estimations using POPLDDECAY

[31] showed linkage disequilibrium to decay within this
window size). We identified highly divergent genomic regions
using Z-transformed FST. To determine the cutoff value, we gen-
erated 2000 genome-wide nominal values through simulations
under the inferred demographic history (M4). We used the top
5% percentile value of the simulated distributions as cutoff.
The chicken gene set (Gallus.gallus.5.0.cds) in BLAST+ v. 2.6.0
[32] was used to annotate these regions and the identified
genes subjected to enrichment analysis using PANTHER [33]. We
also searched for evidence of selective sweeps in each population
using SWEED [34]. To test if the observed pattern of divergent
selection is driven by stochastic processes, we ran permutation
tests by generating 10 000 random samples with the same num-
bers of genes as observed in the FST, DXY and SWEED analyses,
respectively. For each generated sample we annotated the
genes for their relevant functions in gene ontology (GO) to
obtain null distributions for the proportion of development
genes given a certain total number of genes. We compared the
observed number of genes to the null distributions and regarded
observed values larger than the 95th percentile of the null
distribution to be statistically significant.
3. Results and discussion
The novel A. stonii genome has a size of 1092 Mb and consists
of 2364 scaffolds (N50 scaffold size is 75 Mb and N50 contig
size is 436 kb). The 23 largest scaffolds cover 97% of the
genome, and 22 of these match chicken chromosomes 1–20
(electronic supplementary material, table S2). We used these
scaffolds for downstream analyses and refer to them using
chicken chromosome numbers.

The SNAPP result showed that the eight individuals of
A. papuensis fall into two clades, each receiving 100% support,
corresponding to the two recognized subspecies papuensis
and sanfordi (figure 1a,b). The PCA analysis also showed a
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Figure 1. (a) Amblyornis papuensis occupies high mountainous mossy beech (Nothofagus) forests in the western ( papuensis) and eastern (sanfordi) parts of the Central
Range in New Guinea (reddish shade, from [14]). Coloured dots represent sampling sites and purple colour elevations greater than 1000 m.a.s.l. (b) Phylogenetic
relationship within Amblyornis papuensis inferred by SNAPP (based on 80 157 randomly sampled SNPs). Amblyornis macgregoriae, Amblyornis subalaris and Amblyornis
inornata serve as outgroups. Bootstrap values greater than 0.95 are indicated. (c) Principal component analysis of 2 467 355 SNPs. (d ) Estimates of demographic
parameters based on the best-fit model (M4) inferred with FASTSIMCOAL. (e) Temporal variation in effective size (Ne) inferred by POPSIZEABC. ( f ) Size comparisons of
adult individuals of the western ( papuensis) and eastern (sanfordi) populations (from [27], see also the electronic supplementary material, table S7).
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Figure 2. (a) PCA of 19 bioclimatic variables observed at localities within core-distributions of papuensis and sanfordi ( for component loadings see the electronic
supplementary material, table S6). (b) and (c) Genome-wide variation in FST and DXY. (d ) GO enrichment results from the genes identified within the top 5% highly
divergent genomic regions between the populations. (e) Genome-wide distribution of Z(FST) in 50 kb windows. Genes linked to developmental GO terms are indi-
cated (the dotted line indicates the Z(FST) value for windows showing top 1% differential selection between the populations). ( f ) Permutation tests to explore the
probability of whether stochastic processes alone can explain the numbers of genes related to development observed in analyses of divergent selection between
papuensis and sanfordi (Z(FST) and DXY) and of selective sweeps within each of them. Null distributions are shown with the 95th percentiles shaded. Vertical lines
show observed values.
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clear separation between the two populations in the first two
PCs (figure 1c; electronic supplementary material, figure S2).
Although the individual span in nucleotide diversity is larger
among the individuals of papuensis than sanfordi, the average
nucleotide diversity is similar in the two populations
(0.08% in papuensis and 0.09% in sanfordi) as is the average
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standardized multilocus heterozygosity (1.01 in papuensis
and 1.00 in sanfordi).

The AIC comparison supports model M4, decreasing popu-
lation sizes with gene flow as the best-fit (figure 1d; electronic
supplementary material, table S3). Based on this we estimated
that the two populations split around 11.8 kya (95% confidence
interval (CI): 10.2–12.4 kya) with a negligible gene flow (0.005
individuals per generation from papuensis to sanfordi and 0.012
in the opposite direction, figure 1d; electronic supplementary
material, table S4). After their split, the populations underwent
an almost 10-fold decrease of their effective sizes (figure 1e).

The preferred habitats of A. papuensis are montane forests
dominated by Nothofagus trees [14]. Today these forests are
found between 1800 and 3000 m.a.s.l. [35], similar to the
elevational distribution of A. papuensis [14]. During glaciations,
glaciers covered several mountaintops and pushed the
Nothofagus forests downwards to 800–1800 m.a.s.l. [36,37]. This
expanded the area of habitats suitable for A. papuensis, allowing
an increase of its population size. The gradually warmer Late
Pleistocene climate pushed the cold-adapted Nothofagus forests
to higher elevations. The split between the two A. papuensis
populations is estimated to about 11.8 kya and is probably a
consequence of the steady decrease of suitable habitats.

We observed significant differences between the core-
distributions of papuensis and sanfordi in 10 out of 19
bioclimatic variables (electronic supplementary material,
tables S5 and S6). When plotting PC2 and PC3 (proxies for
temperature and precipitation), the localities in the eastern
and western Central Range form two almost non-overlapping
clusters (figure 2a). The loading scores also differ significantly
between these areas (two-tailed t-test, PC2: t 249= 34.8, p <
0.001; PC3: t249 = 10.2, p < 0.001). Although seasonality in
both temperature and precipitation show the largest differ-
ences together with the annual precipitation (electronic
supplementary material, table S5), the combined effect of the
bioclimatic variables is a relatively colder and more humid
climate in the eastern Central Range, where sanfordi lives.
Adaptation to local environmental conditions often explains
intraspecific size variation in birds [38]. The two populations
of A. papuensis exhibit considerable phenotypic differences,
with sanfordi being generally larger than papuensis, particularly
in the tail and wing lengths (figure 1f; electronic supplemen-
tary material, table S7) [27]. It is plausible that the observed
phenotypic differences relate to variation in local climate
(electronic supplementary material, table S5).

Given a recent split time, we found a high level of genetic
divergence between the two populations, indicated by an
average FST value of 0.0523 (95% CI: 0.0518–0.0528) and
DXY of 0.00123 (95% CI: 0.00122–0.00124), respectively
(cf. figure 2b,c). Considering the negligible gene flow between
the two populations, this divergence may have arisen by a
strong genetic drift owing to isolation in different sky-
island regions and drastically decreasing population sizes.

Notably, we found that the top 5% highly divergent win-
dows (with Z(FST) > 1.76), contain a large number of genes
involved in developmental processes (153 of 493 genes, 31%).
This proportion is significantly larger than expected from
the genome background (3568 of 17 770 genes, Fisher’s test
p = 9.09 × 10−6). Our permutation tests further showed that
this proportion of developmental genes is larger than expected
by random chance alone (figure 2f ). Consistently, the GO
enrichment analysis of the 493 genes shows that 33% of the
significantly over-represented GO terms are related to
development processes (figure 2d,e; electronic supplementary
material, table S8). A similar over-representation of develop-
mental genes as for Z(FST) is also observed in the DXY

analysis (electronic supplementary material, table S9). In
addition, we found that the selective sweeps are stronger in
sanfordi than in papuensis, shown by a larger average
composite likelihood-ratio (CLR, 0.11 versus 0.04, Wilcoxon,
p < 0.0001) aswell as a larger number of highly selected regions
(4104 versus 2184, χ2 607.00, p < 0.0001, electronic supplemen-
tary material, figures S3 and S4). A functional annotation of
these highly selected regions reveals a larger proportion of
development genes than would be expected by random
(figure 2f ). Although our results show that divergent selection
of the two populations has especially targeted developmental
genes, we also observe other signals of selection in, e.g. biologi-
cal regulation andmulticellular organismal processes. The total
genomic divergence is surely attributable to multiple forces,
including interspecific competition, trophic niche utilization,
sexual selection, etc. However, as developmental genes take
the largest proportion of selective genes, we conclude that
adaptive divergence in the developmental genes is the major
component shaping the genomic landscape of divergence
between the two populations. Previous studies of high-
elevation animals have shown that changes in body size is
linked to increased selection in developmental genes, e.g. in
yak [39], ground tit [40], Tibetan chicken [41] and Eurasian
tree sparrow [42]. We thus postulate that the phenotypic and
genomic differences observed between the two populations
of A. papuensis are likely to be either causal or indirect conse-
quences of their adaptation to high-elevation environments.
Based on these differences, as well as their geographical
isolation, we suggest treating these populations as separate
species, A. papuensis (Rand, 1940) and A. sanfordi (Mayr &
Gilliard, 1950). This could help when determining future
conservation policies for these very rare New Guinean birds.
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1. MATERIAL AND METHODS (DETAILED DESCRIPTION) 

Samples information, extraction, sequencing, reference mapping and variant calling 

As a reference genome for subsequent mapping we built the de novo genome of a Ailuroedus 

stonii individual collected 28 May 1985 at Kerea, 50 km N of Port Moresby on the Vanapa 

River, 9°04’30’’S, 147°10’30’’E, Central Province, Papua New Guinea, (tissue sample 

Museum Victoria Z43608 = voucher specimen Australian National Wildlife Collection 

ANWC B24961). DNA was extracted from cryofrozen tissue using the KingFisher duo 

extraction robot and the KingFisher™ Cell and Tissue DNA Kit according to the 

manufacturer's instructions. A total of 217.65 Gb of high-quality sequence data was obtained 

by sequencing five DNA libraries (one short-insert-sized, paired-end [180 bp] library, two 

mate-pair [3 and 5-8 kb] libraries, one 10X Genomics Chromium Genome library, and one 

Hi-C library) on an Illumina HiSeq X platform at the National Genomics Institute. The Hi-C 

sequencing was made by the Science for Life Laboratory (National Genomics Institute, 

Stockholm). In the first step a library was prepared using the Omni-C (Dovetail Genomics) 

kit. This is a proximity-ligation protocol using a sequence-independent endonuclease, 

generating data for identification of topologically-associated functional domains and 

scaffolding. The library was sequenced by the means of restriction enzyme digestion, 

followed by proximity ligation to capturing genome organisation within a ligated molecule. 

Ligated library molecules were then sequenced as paired-end reads to reveal which of the 

genome were physically proximal in the nuclei at the time of sampling. 

Low quality and duplicated reads were filtered out before an initial assembly 

done by the Science for Life Laboratory (National Genomics Institute, Stockholm) using the 

ALLPATHS_LG assembler (Butler et al. 2008). The final genome assembly was done using 

the HiRise pipeline (Dovetail Genomics, Putnam et al. 2016) and resulted in a genome length 

of 1,092 Mb (6,982X estimated physical coverage). The assembly resulted in 2,364 scaffolds 

covering 1,092 Mb with a scaffold N50 of 75 Mb and contig N50 of 436 kb. The 23 largest 

scaffolds cover 97% of the genome and we used these for the downstream analyses. They 

were annotated by blasting the window sequences to the chicken genome 

(Gallus.gallus.5.0.cds) using BLAST+ v2.6.0 (Camacho et al. 2009). For 22 scaffolds we 

found almost perfect matches with individual chicken chromosomes 1 to 20 (in two cases two 

scaffolds matched different parts of the same chicken chromosome). The remaining scaffold 

seemingly comprises genomic regions corresponding to chicken chromosomes 21, 22, 23, 24, 

27, 28 and 33. We stress that when using chromosome numbers in the text and figures these 

are only tentative and refer to the chicken genome. 

Amblyornis papuensis is a rare bird species, both in the wild and in museum 

collections. It occupies parts of the New Guinea Highlands (Central Range) and has two 

subspecies, Amblyornis p. papuensis in the west of the species’ range in Indonesia (Wissel 

Lakes, in Weyland Mts area; Nassau Range and Oranje Mts; Bele R and L Habbema region), 

and Amblyornis p. sanfordi in the east of the range in Papua New Guinea (Mt Hagen, Mt 

Giluwe, Tari Gap, and S Karius Range) (Frith & Frith 2020). We are not aware of any fresh 

sample of the species, but by courtesy of American Museum of Natural History, New York, 

Australian National Wildlife Collection, Canberra, Natural History Museum, Tring, and Yale 

Peabody Museum, New Haven, we have obtained toe pads of eight museum study skins, 

amounting to four each of the two subspecies. DNA was extracted from the samples using the 

Qiagen QIAamp DNA Mini Kit following the protocol described in Irestedt et al. (2006). The 

sequencing libraries were prepared using the protocol published by Meyer and Kircher 

(2010). Each library was then amplified in four independent PCR reactions with unique 

indexes and these uniquely tagged products were pooled and cleaned. Finally, the samples 

were pooled and sequenced at equal molarity on one lane on the Illumina NovaSeq platform. 

The Illumina sequencing reads were processed using a custom-designed workflow available 



at https://github.com/mozesblom to remove adapter contamination, low-quality bases and 

low-complexity reads. Overlapping read pairs were merged using PEAR (Zhang et al. 2014) 

and SuperDeduper (Petersen et al. 2015) was used to remove PCR duplicates. Trimming and 

adapter removal was done with Trimmomatic v0.32 (Bolger et al. 2014; default settings) and 

overall quality and length distribution of sequence reads were inspected with Fastqc v0.11.5 

(Andrews 2010) before and after the cleaning. As erroneous DNA degradation patterns almost 

exclusively appear at the ends of sequence reads (Schubert et al. 2012), we shortened all reads 

obtained from museum study skins by deleting 5bp from both ends in order to reduce this 

“noise”.  

We used BWA mem v0.7.12 (Li & Durbin 2009) to map the polished reads 

against the 23 largest scaffolds (including 97% of the whole genome) of the Ailuroedus stonii 

genome. The mapping resulted in a mean coverage of 20.6X (range 15-31X) for the eight 

individuals. We chose to reduce the number of scaffolds in order to speed-up the variant 

calling. High-quality SNPs were called from the BAM-files using mpileup in Samtools v1.4 

(Li et al. 2009) and including individual biallelic genotypes with a depth between 10 and 100 

reads per individual and a quality of 10 or more. A total of 2,467,355 high-quality SNPs were 

used for downstream analyses. 

 

Population structure and demographic history 

Population genetic structure was inferred from the full data set of 2,467,355 SNPs with a 

principal component analysis (PCA) using smartpca in EIGENSOFT v6.1.4 (Price et al. 

2006). Figure 1c shows a striking difference in the variation of individual PCA scores within 

the papuensis and sanfordi populations, respectively. We believe this reflects the considerably 

larger variation in heterogeneity distributions among the papuensis individuals than among 

those of sanfordi (electronic supplementary material, figure S5). 

We also used the coalescent-based program SNAPP v1.3.0 in BEAST2 v2.4.8 

(Bouckaert et al. 2014; Bryant et al. 2012) to perform a Bayesian MCMC analysis of the SNP 

data. The analyses may be interpreted with some caution as SNAPP assumes a strict isolation 

model with constant population sizes, a condition that is may not be met in several of the 

populations (see Results). To make the analysis computationally feasible we first randomly 

sampled 1% SNPs from the full data set and then filtered the non-biallelic variants. In the end, 

80,157 biallelic SNPs shared by the two populations of Amblyornis papuensis and three 

outgroup species (Amblyornis macgregoriae, A. subalaris and A. inornata) were retained for 

analysis. All individuals were assigned to different “populations” to avoid inferring a certain 

topology on the analysis. We chose wide and uninformative distributions as priors of the 

model parameters. The forward and backward mutation rates were set to be estimated during 

the course of the MCMC chain, and the rate parameters were sampled from an inverse gamma 

distribution. For the Yule prior for the species tree the lambda parameter, that governs the rate 

of divergence, was uniformly distributed in the range of zero to one. We run the analyses for 

2,000,000 iterations and assessed convergence of the MCMC chains by plotting likelihood 

scores against iterations and checking that all parameter ESS values were 200 or larger. Trees 

were sampled for every 1,000 iteration and we discarded the first 10% as burn-in. We ran the 

analysis three times to ascertain stability of the results. We plotted the distribution of species 

trees in the posterior sample using DensiTree v2.1.11 (Bouckaert 2010). 

The standardized multilocus heterozygosity was calculated from the 2,467,355 

SNPs data set using the R script inbreedR (https://rdrr.io/cran/inbreedR/src/R/). 

We studied the demographic history of Amblyornis papuensis using different, 

complementary methods. PopSizeABC (Boitard et al. 2016), an approximate Bayesian 

computation pipeline, was used to estimate temporal variation in effective population size 

(Ne) in each lineage. PopSizeABC estimates variation in population size for a group of 



individuals and traces the temporal variation up until a few thousand years ago. PopSizeABC 

uses the SNP data set (2,467,355 SNPs) to calculate summary statistics of the genome-wide 

site frequency spectrum (SFS) and the average zygotic linkage disequilibrium (LD) at specific 

time bins (Boitard et al. 2016). These statistics are first calculated for an empirical data set, 

and then compared with the corresponding statistics calculated from a large number of 

simulated data sets. The simulated data sets are obtained by cutting the empirical data set into 

segments of 2 million bp each and then randomly select 100 such segments. Ne was estimated 

in 21 discrete time windows between 2,400 to 130,000 years BP. In the analyses we set the 

recombination rate to 1.0*10-8, and the genomic mutation rate per generation to 4.6*10-9 

(Smeds et al. 2016). The general biology and life-history parameters for Amblyornis 

papuensis are largely unknown, and this is also true for the generation length (measured as the 

average age of parents of the population). The generation length depends not only on the age 

of first reproduction, but also on adult survival and maximum longevity. Bird et al. (2020) 

estimated that Amblyornis papuensis has a generation length of 5.35 years, which we have 

used herein. We compared the summary statistics for the empirical data sets with 400,000 

simulated data sets to identify the simulations that are most similar. These were then selected 

by applying a simple rejection method with an acceptance (tolerance) rate of 0.01. 

We also used Fastsimcoal v2.6 (Excoffier et al. 2013) to infer the demographic 

history of Amblyornis papuensis. We generated a two-dimensional, unfolded site frequency 

spectrum (SFS) using the doSaf and realSFS functions in ANGSD v0.917 (Korneliussen et al. 

2014) for a 76 Mb region of scaffold 446 that does not contain any highly (top 5%) selected 

50 kb windows. We compared four demographic models combining two hypothetical 

demographic events: a bottleneck (present or not) in the ancestral population and presence or 

not of bidirectional gene flow between the current populations. All parameters were selected 

from uniform distributions. For each demographic inference, we ran two separate analyses 

with 100 replicates each, and we set the number of coalescent simulations (-n) to 200,000. We 

used the Akaike (1974) information criterion (AIC) to evaluate which model had the higher 

likelihood. For this model, we run simulations in 1,000 replicates, each including 20 

estimation loops with 200,000 coalescent simulations. To determine the best parameter 

estimates, we selected the 5% most likely replicate runs (that is, those with the smallest 

difference between the estimated and observed likelihood) and used this subset to calculate 

the mean for all demographic parameters, along with their 95% confidence intervals (based on 

200,000 resamples). We re-calculated estimates of divergence time in units of years, effective 

population sizes, and migration rates by scaling with a neutral mutation rate of 4.6*10-9 

(Smeds et al. 2016) and a generation time of 5.35 years (see above). 

 

Environmental heterogeneity analysis and selection 

To compare local climatic conditions for the two populations in New Guinea we used QGIS 

v3.10.6 to collect 19 bioclimatic variables (BIO1-BIO19, 5 minutes data) from the 

WorldClim v2.1 database for the period 1970-2000 (Fick & Hijmans 2017) for a large 

number of randomly sampled localities within each of the two population’s core distribution. 

Totally 19 bioclimatic variables were scored for 1,939 (western distribution) and 2,938 

(eastern distribution) localities situated between 2,600 and 2,800 m a.s.l. Although 

Amblyornis papuensis occurs at both lower and higher altitudes than this (Frith & Frith 2020), 

we chose to restrict the elevational range to get comparable climatic data from each area. The 

Z-transformed data for all localities in each core area was subjected to principal component 

analysis (prcomp) in R. Differences in component mean values were tested for statistical 

significance with two-tailed t-tests. To test the robustness of our results we repeated the 

analysis for a wider elevational span – for localities situated between 2,300-3,300 m a.s.l. The 

resulting plot of PC2 and PC3 are almost identical (see figure S2 below). 



To evaluate the contribution of divergent selection to the genetic differentiation 

between papuensis and sanfordi we calculated the Z-transformed FST value Z(FST) of the 

populations of each non-overlapping 50 kb window. Estimations of the patterns of linkage 

disequilibrium (LD) with PopLDdecay (Zhang et al. 2019) show that LD is not a problem 

when applying a window size of 50 kb. The 50 kb windows with Z(FST) over 1.76 (the top 

5%) were arbitrarily defined as outlier regions. We annotated these by blasting the window 

sequences to the chicken genome (Gallus.gallus.5.0.cds) using BLAST+ v2.6.0 (Camacho et 

al. 2009). Identified genes within the top 5% selected windows were then referred to gene 

ontology (GO) categories using Panther Classification System (Mi et al. 2019).  

We localized targets of strong selective sweeps by analyzing SNP patterns using 

the site frequency spectrum (SFS). The selective sweeps should be complete to be efficiently 

detected, i.e., the beneficial mutation should be fixed in the population and not be fixed for 

too long. The sweeps should also be strong in relation to recombination as the method we 

used utilize the neutral genomic regions that are around the beneficial mutation. SweeD 

(Pavlidis et al. 2013) calculates SFS in a grid (i.e. windows) across each scaffold and 

implements a composite likelihood ratio (CLR) test based on the sweepfinder algorithm 

(Nielsen et al. 2005). The CLR uses the variation of the whole or derived SFS of a whole 

scaffold to compute the ratio of the likelihood of a selective sweep at a given position to the 

likelihood of a null model without a selective sweep (Badouin et al. 2017). The null 

hypothesis relies on the SFS of the whole‐genome sequence rather than on a standard neutral 

model, which makes it more robust to demographic events such as population expansions 

(Nielsen et al. 2005; Pavlidis et al. 2010). CLRs were computed at 4kb equidistant points 

between the first and last SNP in every scaffold. Based on the results of the FST analysis of 

selection we can safely assume that parts of the genomes have evolved under positive 

selection. This allows us to define a significance threshold from the data set itself. We 

compared the mean CLR across all points in the two populations, as well as the number of 

points with a CLR score larger than two times the standard deviation of the mean for the 

population. 
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2. DATA REPOSITORIES 

Raw Illumina sequences are deposited in Sequence Reads Archive, National Center for 

Biotechnology Information, SRA accession [NCBI does not allow a temporary link to the data 

itself, only to metadata: ftp://ftp-trace.ncbi.nlm.nih.gov/sra/review/ 

SRP242614_20210119_164248_5db09cb32d8e4e9ff6be1f76a085f9ce]. 

The Ailuroedus stonii genome assembly and data related to the analyses are deposited in 

Dryad [temporary link during the review process:  

https://datadryad.org/stash/share/WUc1va-3KDbDtUlhKeF5H05snl8ZauRh-5jiOekyNFc]. 
  



3. SUPPLEMENTARY FIGURES 

 

 

 

 

Figure S1: The observed site frequency spectrum (SFS) was compared with simulations using 

four models of hypothesized demographic events. All models postulate a split of an ancestral 

population into two daughter populations. The models differ in that two (M3 and M4) 

hypothesize a decrease of the effective population size after the split, and two (M1 and M2) 

hypothesize occurrence of gene flow between the daughter populations. 

  



 

 

Figure S2: Results of principal component analyses of 19 bioclimatic variables (BIO1-BIO19, 

5 minutes data) obtained for a large number of random localities within each of the two 

populations’ core-areas in the Central Range in New Guinea. Orange dots represents localities 

within the western Central Range (papuensis core-distribution) and blue dots localities within 

the eastern Central Range (sanfordi core-distribution). The left figure shows the result when 

restricting the localities to those at elevations between 2,600-2,800 m a.s.l. The right figure 

shows the results for a wider elevational range, 2,300-3,300 m a.s.l. The two analyses yield 

highly similar results and we have based our results on the more narrow elevational range 

where the vast majority of the individuals in each population lives.  

  



 

 

 

 

 

 

Figure S3: Box-plots of CLR (composite likelihood ratio) values for regions across the whole 

genome exhibiting signs of strong selective sweeps (CLR > 2*s.d.) in populations papuensis 

(n = 2,184) and sanfordi (n = 4,104), respectively. The average CLR value across the genome 

is almost three times larger in the sanfordi population than in papuensis (0.11 vs. 0.04, 

Wilcoxon, p <0.0001). 

  



 

 

 
 

Figure S4: Genome-wide analyses of selective sweeps with SweeD shows that the number of 

windows exhibiting signs of selective sweeps are more common in sanfordi, and that the CLR 

(composite likelihood ratio) values are also higher in this population. The average CLR per 

window is 0.04 for papuensis and 0.11 for sanfordi (the difference is not statistically 

significant) and the number of regions with a CLR larger than 2*s.d. are 2,184 (2.4%) in 

papuensis and 4,104 (4.4%) in sanfordi (χ2 607.00, p < 0.0001). The figure shows a genomic 

region that constitutes ca. 10% of the total genome. 

 
  



 

 

Figure S5: Comparison of heterogeneity distributions in the eight individuals studied. The 

individuals of the sanfordi population shows a larger degree of similarity than those of the 

papuensis population. 
  



 

1. SUPPLEMENTARY TABLES 

 

 

Table S1: Samples sequenced in the study. Abbreviations: AMNH, American Museum of Natural History, New York; ANWC, Australian 

National Wildlife Collection, Canberra; BMNH, Natural History Museum, London; YPM, Peabody Museum, Yale University, New Haven. 

    

 

 

 

  



Table S2: The 23 largest scaffolds were analysed, corresponding to 97% of the total genome length. Blasting to the chicken genome showed that 

most scaffolds match chicken chromosomes. 

 



Table S3: The demographic models tested using Fastsimcoal. The models differ in their combination of a hypothesized population change after 

the split between the populations, and the presence of gene flow (electronic supplementary material, figure S1). Model M4, inferring size changes 

of the populations and presence of gene flow after they split, received the highest likelihood by AIC comparison. 

 

  



Table S4: Inferred demographic parameters under model M4 (Figure 1d). The parameter TDIV is scaled by a generation length of 5.35 years. 

 

 

 

  



Table S5: Test of means of 19 bioclimatic variables observed at randomly sampled localities within the distributions (between 2,600-2,800 m 

a.s.l.) of populations papuensis (western New Guinea, 1939 localities) and sanfordi (eastern New Guinea, 2938 localities), respectively. 

 

  



Table S6: Principal component analysis of 19 bioclimatic variables observed at random localities within each population’s core distribution area. 

For a detailed description of methods, see the text in electronic supplementary material. 

 

 

  



Table S7: Size comparisons between adult individuals of the populations in the western (papuensis) and eastern (sanfordi) parts of Central Range 

in New Guinea. This summary statistics were extracted from Frith & Frith (2004) and it has not been possible to analyze the data statistically at 

an individual level. See also figure 1f. 

 

 

 

  



Table S8: Significantly enriched Gene Ontology (GO) terms of biological processes among the 495 genes identified in the 50kb windows that 

showed the top 5% strongest signatures of divergent selection (measured as Z(FST)) between the populations papuensis and sanfordi. The table 

shows the GO terms assigned by Panther, the number of genes in each category and the p-value (adjusted for false discovery rate) for the 

enrichment of the term. Note that a single gene may be associated with more than one biological process. 

 

 

  



Table S9: Significantly enriched Gene Ontology (GO) terms of biological processes among the genes identified in the 50kb windows that showed 

the top 5% strongest signatures of divergent selection (measured as DXY) between the populations papuensis and sanfordi. The table shows the 

GO terms assigned by Panther, the number of genes in each biological process, the p-value (adjusted for false discovery rate) for the enrichment 

of the term, and to which higher GO category the process belongs. Note that a single gene may be associated with more than one biological 

process. 
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