A Lower Cretaceous palynoflora from Carregueira (Lusitanian Basin, westernmost Iberia): taxonomic, stratigraphic and palaeoenvironmental implications

Mário Miguel Mendes a,b,*, Vivi Vajda c, Pedro Proença Cunha d, Pedro Dinis d, Marcela Svobodová c,f, James A. Doyle g

a University of Coimbra, MARE - Marine and Environmental Sciences Centre, Largo Marquês de Pombal, 3030-790 Coimbra, Portugal
b Fernald Pesso University, Praça 5 de Abril, 4249-004 Porto, Portugal
c Department of Paleobiology, Swedish Museum of Natural History, Box 50007, SE-104 65 Stockholm, Sweden
d University of Coimbra, MARE - Marine and Environmental Sciences Centre, Department of Earth Sciences, Rua Silvio Lima, Polo II, 3030-790 Coimbra, Portugal
e Czech Academy of Sciences, Institute of Geology, Department of Paleobiology and Paleoecology, Rozvojová 269, 165 00 Praha 6, Czech Republic
f National Museum Prague, Víclavské náměstí 68, 115 79 Prague 1, Czech Republic
g Department of Evolution and Ecology, University of California, Davis, CA 95616, USA

ARTICLE INFO

Abstract
Here we describe a new Lower Cretaceous palynoflora from the Lusitanian Basin, located in the westernmost sector of the Iberian Peninsula. The spore-pollen assemblage was extracted from samples collected in the Carregueira clay pit complex, located near the village of Juncal, western Portugal, from sedimentary deposits belonging to the Figueira da Foz Formation. A rich and well-preserved palynoflora, typical of non-marine fluvial environments, was recovered. Fifty-eight species and morphological groups of palynomorphs in 43 genera were recognized. The palynoflora is dominated by fern spores and conifer pollen. Angiosperm pollen is scarce and mainly represented by Afropollis, Clavatipollenites, Stellatopollis and Senectotetradites. Comparisons with described marine sections in Portugal suggest that the fossil horizon is lower Albian, corresponding to a hiatus between Zone I and Zone II in the Potomac Group of the eastern USA. The same beds contain a mesofossil flora dominated by angiosperm seeds, fruits and flowers. A similar contrast in the relative abundance of angiosperm mesofossils and pollen is seen at other Portuguese localities but is not evident in the Potomac Group. The palynoflora and the sedimentological data suggest deposition in wet lowland environments in a moderately humid regional setting.

Keywords: Spores Pollen Cretaceous Albian Figueira da Foz Formation Portugal

1. Introduction

Angiosperms and angiosperm-dominated ecosystems are in geological terms young and follow a long series of changes in the plant cover on Earth since colonization of the land by spore-bearing plants in the Early Palaeozoic. Angiosperm diversification through the Cretaceous is of utmost importance because it caused radical changes in terrestrial ecosystems. Earlier Mesozoic ecosystems with floras dominated by ferns, conifers, cycads, Bennettitales and other groups of extinct plants were largely replaced by angiosperm-dominated vegetation during the mid-Cretaceous (Lidgard and Crane, 1988; Wing and Boucher, 1998; Friis et al., 2011).

The Cretaceous rocks of the Lusitanian Basin (western Portugal) comprise an extensive sedimentary sequence with abundant and well-preserved plant fossils at different stratigraphic levels. These strata contain exceptional mesofossil floras including flowers, fruits, seeds and other reproductive structures (Friis et al., 1999, 2000, 2006, 2010, 2011, 2015, 2018, 2019; von Balthazar et al., 2005; Pedersen et al., 2007; Mendes et al., 2011, 2014a,b; Mendes and Friis, 2018), which have contributed to understanding of the systematic diversity and evolutionary diversification of angiosperms and associated plants, in many cases using phylogenetic methods (Friis et al., 2009, 2015; Doyle and Endress, 2014, 2018). Other plant fossils such as leaves and twigs have provided general evidence on vegetational composition (Heer, 1881; Saporta, 1894; Romariz, 1946;
Teixeira, 1945, 1947, 1948, 1950, 1952), while palynological assemblages including pollen, spores, and in some cases dinoflagellates (Groot and Groot, 1962; Hasenboehler, 1981; Pais and Reyre, 1981; Médus, 1982; Berthou and Leereveld, 1990; Trincão, 1990; Heimhofer et al., 2005, 2007; Horix et al., 2014, 2016, 2017) have mostly addressed stratigraphic issues. These palynofloras have yielded significant data that complement inferences from leaf and mesofossil floras and can provide important clues for the reconstruction of ancient ecosystems (Schrank, 2010; Mendes et al., 2011, 2014a, 2017, 2018, 2019; Mendes and Friis, 2018; Tanrikulu et al., 2018).

The geographic distribution of plants is largely controlled by temperature and precipitation regimes, which make them reliable palaeoclimatic and paleoecological indicators. Pollen and spores are among the most important proxies due to their abundance in the fossil record, their broad sampling of the regional vegetation, and the direct relationship between vegetation composition and environmental changes. Furthermore, palynomorphs together with other climatic proxies, i.e., sedimentology, can contribute to better understanding of the changing climate in the Lusitanian Basin during the Cretaceous (Mendes et al., 2011, 2014a, 2018; Heimhofer et al., 2012).

Here we describe a new Lower Cretaceous palynoflora from near the base of the Figueira da Foz Formation in westernmost Iberia and compare it with palynofloral sequences elsewhere in Portugal, in England, and in North America. The sample locality is the Carregueira opencast clay pit complex, located near the village of Juncal in the central-western mainland Portugal. Based on the palynological and sedimentological data, we aim to assess the past regional vegetational composition and palaeoclimatic conditions prevailing during the deposition of the Figueira da Foz Formation.

2. Geological setting

The present study deals with Cretaceous material from the Lusitanian Basin in the westernmost sector of the Iberian Peninsula (Wilson et al., 1989), between the towns of Nazaré and Leiria (central-western mainland Portugal) (Fig. 1A). In this area (Fig. 1B), the Cretaceous is represented by two major sequence-stratigraphic units, UBS4 — uppermost Aptian to lower Campanian — and UBS5 — upper Campanian to lower Eocene (Cunha, 1992; Cunha and Pena dos Reis, 1995; Dinis et al., 2008) (Fig. 2). To the south of the study area, in the vicinity of Torres Vedras, the 1:50 000 geological map of the Portuguese Geological Survey (Carta Geológica de Portugal, Folha 26-B, Alcobaca; França and Zbyszewski, 1963) referred to the Lower Cretaceous as the “Grês com vegetais fosseis de Torres Vedras e Cercal” (Sandstones with fossil plants of Torres Vedras and Cercal). Subsequently this unit has been thoroughly investigated by several authors (Rey, 1972, 1993; Dinis et al., 2002; Rey et al., 2003), and part of it is now assigned to the Figueira da Foz Formation (Dinis et al., 2008).

In the study area, the Figueira da Foz Formation is about 260–280 m thick and comprises mainly fluvial to nearshore siliciclastic deposits. This unit passes upwards and laterally (toward the SW) into the brackish and marine carbonates (limestones and marls) of the Costa de Arnes Formation (middle Cenomanian to lower Turonian; Berthou, 1984; Callapez, 1998). Palaeocurrents measured from the Figueira da Foz Formation in the region indicate a regional fluvial drainage towards WSW (Dinis et al., 2008).

An opencast clay pit complex located (39° 35’ 25” N; 08° 55’ 33” W) near the village of Juncal was selected for detailed study (Fig. 1). The sampled site is an exposure of around 5 m × 20 m, containing sedimentary deposits ascribed to the Famalicão Member, situated about 30 m above the base of the Figueira da Foz Formation (Fig. 2;
Fig. 2. Synthetic lithostratigraphic chart of the Cretaceous of the western Portuguese margin (Dinis et al., 2008). UBS: unconformity bounded sequences after Cunha and Pena dos Reis (1995). The red square indicates the geographical and stratigraphical position of the studied site. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
Dinis et al., 2008). In the study area, the Famalicão Member has been considered upper Aptian or lower Albian (Teixeira, 1950; Friis et al., 1999, 2010) or upper lower Albian (Heimhofer et al., 2005, 2007) based on macrofossils, palynology, and sequence-stratigraphic considerations. This stratigraphic assignment is compatible with the framework of Atlantic rifting events for West Iberia, namely a post-rift transgression associated with the onset of seafloor spreading to the northwest of the Iberian Peninsula in the late Aptian (Rey, 2006; Dinis et al., 2002, 2008).

3. Material and methods

Rock samples were collected by M.M. Mendes and P.P. Cunha at the Carregueira opencast clay pit complex. Although only the basal part of the sampled site provided plant remains, the palaeontology and sedimentology of the Cretaceous succession of the Carregueira clay pit complex were studied in detail to improve our understanding of the local stratigraphy and sedimentology. Fieldwork included stratigraphic logging and sedimentological characterization of the deposits in order to obtain data on the depositional facies, including rock colour, texture, clast lithology, fossil content, bedding and depositional architecture.

At the studied stratigraphic section, six samples (B.Carr 1 to B.Carr 6) were collected for sedimentological characterization (Fig. 3). Grain-size distributions of fine-grained deposits were obtained by laser diffraction using a Coulter LS 230 granulometer. The clay mineralogy was determined by X-ray diffraction (XRD) using an Aeris instrument (Malvern Panalytical) with Cu K-alpha radiation. XRD analyses were performed on oriented aggregates (<2 μm), separated by centrifugation according to Stokes’ law, both on air-dried slides (2–30° 2θ) and after solvation with ethylene glycol and heating at 550 °C (2–15° 2θ). Semi-quantitative estimations of mineral proportions were based on the areas of their characteristic reflections after the application of correction factors (Moore and Reynolds, 1997; Kahle et al., 2002). Grain-size and mineralogical analyses were carried out in the laboratories of the Earth Sciences Department of University of Coimbra.

Twenty samples were processed following standard palynological techniques (Traverse, 2007). Palynomorphs were extracted from rock samples of ca. 50 g using concentrated HCl (10%) and HF (40%). The organic residue was then oxidized in concentrated HNO₃ (69%) followed by repeated washing with distilled water over a 125 μm mesh nylon sieve until neutral in order to remove larger coal fragments. All the material passing through the sieve was concentrated by centrifuging and then retained in distilled water in small glass vials.

For light microscopic (LM) studies, five glycerine jelly microscope slides were prepared from each sample and sealed with nail varnish. LM pictures were taken with a Nikon Coolpix 5400 digital camera on a Nikon Eclipse E600 microscope using ×60 and ×100 objectives. Counts of specimens from each of the six productive samples were made in order to assess the quantitative composition of the flora.
The study horizon also contains a small mesofossil flora currently being studied by E.M Friis and coworkers. This flora is dominated by angiosperm fruits, seeds, and flowers, which consist mainly of taxa that are well known from other Portuguese localities: e.g., Anacostia (Frisi et al., 1997), Canrightiopsis (Frisi et al., 2015), Saportanthus (Frisi et al., 2017), and seeds representing Nymphaeales or Austrobaileyales (Mendes and Friis, 2018).

4. Results

4.1. Sedimentary deposits

The studied succession (~5 m thick; Fig. 3) represents entirely continental deposits typical of a fluvial environment. The rocks consist predominantly of white and yellowish sandstones, generally displaying trough and planar cross laminations or horizontal laminations. Coarser-grained beds tend to show fining-upward gradation, yielding sub-rounded quartz and quartzite gravels (clasts up to ~4 cm in diameter) near their flat or concave-upward bottom surfaces. Intercalated fine-grained deposits consist of a reddish siltstone (~1 m thick) that passes upward to a thin layer of grey mudstone. The grain-size distributions of the sampled deposits are poorly sorted and skewed toward the finer fraction. Clay assemblages are characterized by a predominance of kaolinite with secondary illite and, occasionally, minor amounts of smectite.

In these fluvial deposits, mud layers and mud-drapes record low-energy overbank deposition from suspension in floodplains or small lakes. Renewal of the water energy shortly after the deposition of the fine-grained facies limited bioturbation by plant roots, preventing its complete reworking. Compositional features provide additional information about environmental conditions. Abundant kaolinite is common in wet and warm environments (Chamley, 1989; Velde, 1995), but it may also be associated with post-depositional chemical decomposition of feldspar in porous sandstone beds (Hundert et al., 2006). However, the kaolinite enrichment in fine-grained beds suggests intense weathering in the drainage area instead of a diagenetic origin.

4.2. The palynoflora

Out of the 20 samples collected from the Carregueira section, only six samples were productive, all from the same stratigraphic level. B.Carr 3 (Fig. 3). The palynofloral assemblages from the six samples contain abundant and generally well-preserved miospores together with rare aquatic palynomorphs (Figs. 4–6). Fifty-eight species of palynomorphs (also including two undifferentiated morphological groups) assigned to 43 genera were recognized (Table 1): 30 spore taxa, 20 gymnosperm taxa, five angiosperm taxa and three species of fresh-water algae. Miospores include spores of bryophytes, lycophytes and pteridophytes (ferns), and pollen grains assigned to gymnosperms and angiosperms (Table 1). Gymnosperm pollen is most abundant, reaching about 48% of the total recovery from the productive samples. Fern spores are frequent and reach nearly the same percentage as gymnosperm pollen (41.0%). Less abundant are bryophyte spores (3.0%) and lycophyte spores (3.0%). Angiosperm pollen reaches just over 2%.

Among the fern spores, representatives of the families Anemiaceae (16.5%), Cyatheaceae/Dicksoniae (5.0–7.6%), depending on whether Cyathidites australis and Cyathidites punctatus belong to this group or to Lygodiaceae) and Lygodiaceae (4.5–7.1%) occur in the Carregueira palynoflora. Anemiaceae (Schizaeales) are represented by trilete spores with coarse and compact ridges assigned to the genera Appendicisporites, Cicatricosisporites (Fig. 5J, K), Costatorperiformisporites (Fig. 5L) and Plicatella. Cicatricosisporites sp. A (Fig. 5K) and Cicatricosisporites hallei (Fig. 5J) are the most abundant species of their genus. Lygodiaceae (also Schizaeales) may be represented by Ichysporites (Fig. 5D, E). Cyatheaceae/Dicksoniaceae are represented by smooth-walled spores assigned to Cyathidites australis (Fig. 5G). Verrucate spores identified as Convatissimisporites informis (Fig. 5F) and Cyathidites punctatus (Fig. 5I) have been compared to both Lygodiaceae and Cyatheaceae/Dicksoniaceae. Relatively common and diverse ornamented pteridophytic spores include the marisileaceous Crybelosporites paranus (Fig. 4J, K) and specimens of uncertain botanical affinity ascribed to Patellisporites tavedrensis (Fig. 4H). A few spores assigned to Cibotiumspora juncta (Fig. 5H), which may represent Matoniaceae or Gleicheniaceae, were recorded.

Lycophyte spores are represented by Camarozonosporites insignis (Fig. 5A, B) and possibly Densosporites velatus (Fig. 4G). Bryophyte spores are rare and represented by Aequitriradiates verrucosus (Fig. 4C), Triporate reticulatus (Fig. 4D) and Taurocospores segmentatus (Fig. 4E), which are common. Two angiosperm palynomorphs include two species of Zygmemataceae ascribed to Ovulites (Fig. 4A) and one species of Chlorophyta assigned to Schizosporis (Fig. 4B). No marine palynomorphs were observed.

The most common gymnosperm pollen grains in the Carregueira palynoflora are the circumcussale Classopolis (Fig. 6B, C), produced by the extinct conifer family Cheirolepidaeae (14.0%), and bissaccate pollen grains (Fig. 6G, H), representing Pinaceae and possibly a few Podocarpaceae and seed ferns (9.0%). Other prominent gymnosperm pollen types are Araucariacites australis (Fig. 6F) and other types representing Araucariaceae (10.4%), probable Cupressaceae, including Spheronpollenites psilatius (Fig. 6A), and Cycadopites follicularis (Fig. 6E), which may be bennettitalean. Rare polyplacoid grains of Ephedripites indicate the presence of Gnetales. Furthermore, pseudotricolpate (trisulcate) pollen grains assigned to Eucomniumdites (Fig. 6D) represent the extinct gymnosperm order Erdtmannithales.

Angiosperm pollen is rare in the studied samples but is important from a palaeontological point of view, as well as for interpretations of the palaeocology, palaeogeography and stratigraphy. The most common angiosperm pollen are represented by finely reticulate monosulcate grains assigned to Clavatipollenites hughesi (Fig. 6), which has been associated with Chloranthaceae (Frisi et al., 2011; Doyle and Endress, 2018). It is most similar to pollen of the extant genus Ascarina, but it has been found adhering to the mesofossil Canrightiopsis (Frisi et al., 2015), which may be a primitive type ascribed to Aequitriradiates verrucosus (Fig. 6F) and other types representing Araucariaceae (10.4%), probable Cupressaceae, including Spheronpollenites psilatius (Fig. 6A), and Cycadopites follicularis (Fig. 6E), which may be bennettitalean. Rare polyplacoid grains of Ephedripites indicate the presence of Gnetales. Furthermore, pseudotricolpate (trisulcate) pollen grains assigned to Eucomniumdites (Fig. 6D) represent the extinct gymnosperm order Erdtmannithece.

Angiosperm pollen is rare in the studied samples but is important from a palaeontological point of view, as well as for interpretations of the palaeocology, palaeogeography and stratigraphy. The most common angiosperm pollen are represented by finely reticulate monosulcate grains assigned to Clavatipollenites hughesi (Fig. 6), which has been associated with Chloranthaceae (Frisi et al., 2011; Doyle and Endress, 2018). Another monosulcate type is Stellatopolis barghoornii (Fig. 6I), of unknown affinities, which has distinctive “crotonoid” or “stellate” sculpture consisting of triangular supratctal elements. It was first described from the Potomac Group (Doyle et al., 1975) but is more common in Northern Gondwana (Doyle et al., 1977; Penny, 1986; Ibrahim, 2002). Another monosulcate angiosperm type is Stellatopolis barghoornii (Fig. 6I), of unknown affinities, which has distinctive “crotonoid” or “stellate” sculpture consisting of triangular supratctal elements. It was first described from the Potomac Group (Doyle et al., 1975) but is more common in Northern Gondwana (Doyle et al., 1977; Penny, 1986; Ibrahim, 2002). Another monosulcate type is Stellatopolis barghoornii (Fig. 6I), of unknown affinities, which has distinctive “crotonoid” or “stellate” sculpture consisting of triangular supratctal elements. It was first described from the Potomac Group (Doyle et al., 1975) but is more common in Northern Gondwana (Doyle et al., 1977; Penny, 1986; Ibrahim, 2002).
5. Discussion

5.1. Palaeobiogeographic and stratigraphic considerations

As is typical of floras from the upper part of the Lower Cretaceous, the Carregueira palynoflora is dominated by ferns and gymnosperms but also contains sparse angiosperm pollen. In phytogeographic terms, it belongs to the Southern Laurasia province of Brenner (1976), which extended from middle palaeolatitudes of North America through Europe to East Asia. This province was intermediate between Northern Laurasia (Siberia, Alaska, Canada) and Northern Gondwana (Africa and South...
America, except for their southern extremities). The conifers were a mixture of taxa that were also abundant in Northern Laurasia, namely Pinaceae (with bisaccate pollen) and Cupressaceae (including former Taxodiaceae), and taxa that were dominant in Northern Gondwana, namely Cheirolepidiaceae (*Classopollis*) and Araucariaceae. Bisaccate pollen was almost entirely absent in Northern Gondwana, but it reappeared in Southern Gondwana (southern South America and Africa, India, Australasia), where was presumably produced by Podocarpaceae. Southern Laurasia is notable for a high diversity of spores, with the striate to coarsely...
reticulate-verrucate spores of the fern order Schizaeales (Anemicae, Lygodiaceae) being especially prominent. By contrast, in Northern Gondwana spores varied from highly subordinate in some regions to abundant but relatively low in diversity in others. The palaeoecological significance of these variations is discussed further below.

Most members of the Carregueira palynological assemblage belong to long-ranging taxa such as Cyathidites, Classopollis, Araucariacites, and Spheripollenites. However, features such as the diversity of Cicatricosisporites species (Anemiaceae) are indicative of an Early Cretaceous age (Traverse, 2007).

Table 1
Spore and pollen taxa identified in the Carregueira palynoflora, with species listed alphabetically within genera. Absolute numbers (N) and percentages (%) of taxa are based on combined counts from all six productive samples.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>N</th>
<th>%</th>
<th>Botanical affinity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acritospores oculatus (Deák, 1965)</td>
<td>13</td>
<td>0.8</td>
<td>Peridiphyta (Lygodiaceae)</td>
</tr>
<tr>
<td>Acritospores verrucosus Cookson & Dettmann 1961</td>
<td>24</td>
<td>1.5</td>
<td>Bryophyta (Hepaticae)</td>
</tr>
<tr>
<td>Apiculatisporis juhiae Brenner 1963</td>
<td>32</td>
<td>2.0</td>
<td>Lycophyta or Peridiphyta</td>
</tr>
<tr>
<td>Appendicosporites tricornius Weyland & Greifeld 1953</td>
<td>22</td>
<td>1.3</td>
<td>Peridiphyta (Anemioaceae)</td>
</tr>
<tr>
<td>Baculatisporites sp.</td>
<td>12</td>
<td>0.7</td>
<td>Peridiphyta (Osmundaceae)</td>
</tr>
<tr>
<td>Camarozonosporites insignis Norris 1967</td>
<td>13</td>
<td>0.8</td>
<td>Lycophyta (Lycopodiaceae)</td>
</tr>
<tr>
<td>Ceratosporites parvus Brenner 1963</td>
<td>14</td>
<td>0.9</td>
<td>Lycophyta (?Selaginellaceae)</td>
</tr>
<tr>
<td>Cicatricosisporites hallei Cookson 1958</td>
<td>55</td>
<td>3.4</td>
<td>Peridiphyta (Anemioaceae)</td>
</tr>
<tr>
<td>Cicatricosisporites sp. A</td>
<td>32</td>
<td>2.0</td>
<td>Peridiphyta (Anemioaceae)</td>
</tr>
<tr>
<td>Cicatricosisporites sp.</td>
<td>57</td>
<td>3.5</td>
<td>Peridiphyta (Anemioaceae)</td>
</tr>
<tr>
<td>Coccastinispores informatis Döring 1965</td>
<td>34</td>
<td>2.1</td>
<td>Peridiphyta (Cyathaceae/Dicksonia)</td>
</tr>
<tr>
<td>Costateoeropersporites triangulatus Deák 1962</td>
<td>10</td>
<td>0.6</td>
<td>Peridiphyta (Anemioaceae)</td>
</tr>
<tr>
<td>Costateoeropersporites sp.</td>
<td>34</td>
<td>2.1</td>
<td>Peridiphyta (Anemioaceae)</td>
</tr>
<tr>
<td>Cybelosporites velatus (Deák 1963)</td>
<td>27</td>
<td>1.7</td>
<td>Peridiphyta (Marsileaceae)</td>
</tr>
<tr>
<td>Cyathidites australis Couper 1953</td>
<td>48</td>
<td>2.9</td>
<td>Peridiphyta (Cyathaceae/Dicksonia or Lygodiaceae)</td>
</tr>
<tr>
<td>Cyathidites punctatus (Delcourt & Sprumont) Delcourt, Dettmann & Hughes 1963</td>
<td>43</td>
<td>2.6</td>
<td>Peridiphyta (Cyathaceae/Dicksonia or Lygodiaceae)</td>
</tr>
<tr>
<td>Cicatricosisporites venustus Döring & Hughes 1956</td>
<td>7</td>
<td>0.6</td>
<td>Peridiphyta (Gleichenieae or Matonieae)</td>
</tr>
<tr>
<td>Cicatricosisporites velatus Weyland & Krieger 1953 emend. Dettmann 1963</td>
<td>15</td>
<td>0.9</td>
<td>Lycophyta (Selagniellaceae)</td>
</tr>
<tr>
<td>Gressuisisporites orientalis Juhász & Srinovna 1985</td>
<td>12</td>
<td>0.7</td>
<td>Peridiphyta</td>
</tr>
<tr>
<td>Ischyosporites pseudoreticulatus (Couper, 1958)</td>
<td>22</td>
<td>1.3</td>
<td>Peridiphyta (Lygodiaceae)</td>
</tr>
<tr>
<td>Ischyosporites punctatus Cookson & Dettmann 1958</td>
<td>39</td>
<td>2.4</td>
<td>Peridiphyta (Lygodiaceae)</td>
</tr>
<tr>
<td>Lavegatosporites ovatus Wilson & Webster 1946</td>
<td>23</td>
<td>1.4</td>
<td>Peridiphyta (Polyiodiaceae)</td>
</tr>
<tr>
<td>Patellasporites taverdenensis Groot & Groot 1962</td>
<td>31</td>
<td>1.9</td>
<td>Peridiphyta</td>
</tr>
<tr>
<td>Patellasporites sp.</td>
<td>14</td>
<td>0.9</td>
<td>Peridiphyta</td>
</tr>
<tr>
<td>Plicatella sp.</td>
<td>23</td>
<td>1.4</td>
<td>Peridiphyta (Schizaeaceae)</td>
</tr>
<tr>
<td>Taurocusporites segmentatus Stover 1962</td>
<td>11</td>
<td>0.7</td>
<td>Bryophyta (Hepaticae)</td>
</tr>
<tr>
<td>Todisporites major Couper 1958</td>
<td>17</td>
<td>1.0</td>
<td>Peridiphyta (?Osmundaceae)</td>
</tr>
<tr>
<td>Todisporites minor Couper 1958</td>
<td>20</td>
<td>1.2</td>
<td>Peridiphyta (?Osmundaceae)</td>
</tr>
<tr>
<td>Trirhopdotestellales reticulosus (Pocock, 1962) Playford 1971</td>
<td>19</td>
<td>1.2</td>
<td>Bryophyta (Hepaticae)</td>
</tr>
<tr>
<td>Pollen grains (Gymnosperms)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alisporites rotundus Roase 1959</td>
<td>6</td>
<td>0.4</td>
<td>?Peridispermales</td>
</tr>
<tr>
<td>Araucariaeites australis Cookson 1947</td>
<td>93</td>
<td>5.7</td>
<td>Coniferophyta (Araucariaceae)</td>
</tr>
<tr>
<td>Araucariaeites sp.</td>
<td>34</td>
<td>2.1</td>
<td>Coniferophyta (Araucariaceae)</td>
</tr>
<tr>
<td>Balmeiosis limbata (Balme, 1957) Archangelsky 1979</td>
<td>7</td>
<td>0.4</td>
<td>Coniferophyta (Araucariaceae)</td>
</tr>
<tr>
<td>Callalasporites damperi (Balme, 1957) Dev 1961 emend. Norris 1969</td>
<td>22</td>
<td>1.3</td>
<td>Coniferophyta (Araucariaceae)</td>
</tr>
<tr>
<td>Callalasporites sp.</td>
<td>14</td>
<td>0.9</td>
<td>Coniferophyta (Araucariaceae)</td>
</tr>
<tr>
<td>Cedripites sp.</td>
<td>5</td>
<td>0.3</td>
<td>Coniferophyta (Pinaceae)</td>
</tr>
<tr>
<td>Cerelopollenites mesozocis (Couper, 1958) Nilsson 1958</td>
<td>32</td>
<td>2.0</td>
<td>?Coniferophyta</td>
</tr>
<tr>
<td>Classopollis torosus Burger 1965</td>
<td>88</td>
<td>5.4</td>
<td>Coniferophyta (Chiolepidiaceae)</td>
</tr>
<tr>
<td>Classopollis spp.</td>
<td>140</td>
<td>8.6</td>
<td>Coniferophyta (Chiolepidiaceae)</td>
</tr>
<tr>
<td>Cycadopollis follicularis Wilson & Webster 1946</td>
<td>29</td>
<td>1.8</td>
<td>Cycadales or Bennettitales</td>
</tr>
<tr>
<td>Cycadopollis spp.</td>
<td>48</td>
<td>2.9</td>
<td>Cycadales or Bennettitales</td>
</tr>
<tr>
<td>Eucommoides minor Groot & Penny 1960</td>
<td>15</td>
<td>0.9</td>
<td>Eudrantiaceales</td>
</tr>
<tr>
<td>Eucommoides sp.</td>
<td>23</td>
<td>1.4</td>
<td>Eudrantiaceales</td>
</tr>
<tr>
<td>Ephedripites sp.</td>
<td>6</td>
<td>0.4</td>
<td>Gnetales</td>
</tr>
<tr>
<td>Monosulcites minimus Cookson 1947</td>
<td>21</td>
<td>1.3</td>
<td>Bennettitales</td>
</tr>
<tr>
<td>Pinuspollenites sp.</td>
<td>10</td>
<td>0.6</td>
<td>Coniferophyta (Pinaceae)</td>
</tr>
<tr>
<td>Piceaepollenites sp.</td>
<td>13</td>
<td>0.8</td>
<td>Coniferophyta (Pinaceae)</td>
</tr>
<tr>
<td>Spheroepollenites psilatus Couper 1958</td>
<td>66</td>
<td>4.0</td>
<td>Coniferophyta (Cupressaceae)</td>
</tr>
<tr>
<td>Undetermined bisaccate pollen grains</td>
<td>112</td>
<td>6.9</td>
<td>unknown Coniferophyta</td>
</tr>
<tr>
<td>Total</td>
<td>1632</td>
<td>100.0</td>
<td></td>
</tr>
</tbody>
</table>

For stratigraphic purposes, the most useful comparisons of the Carregueira palynoflora are with sequences in Portugal, England, and the Atlantic and Gulf Coastal Plains of the USA, which were also located in the Southern Laurasia province. Within this province, differences in stratigraphic ranges due to climatic and migrational factors, of the sort seen between Southern Laurasia and Northern Gondwana, are presumably less important. Several sequences are long and closely sampled enough for some confidence in the validity of observed temporal changes through the Aptian–Albian; others represent shorter intervals but provide well-dated reference points.
The most informative Portuguese pollen sequences (Heimhofer et al., 2005, 2007) are from two long coastal sections, which consist of nearshore marine deposits that are dated primarily by dinoflagellates. The Luz section in the Algarve Basin (southwest Portugal) is thought to be nearly continuous through the Aptian and lower Albian. The Cresmina section in the Lusitanian Basin (central Portugal, ca. 120 km SW of Carregueira) extends from the upper Barremian to the middle Albian but is interrupted by a major hiatus comprising much of the Aptian, which corresponds to the regional unconformity at the base of the Figueira da Foz Formation. Less intensively sampled but well-dated marine deposits in England provide important corroborative evidence (Kemp, 1968, 1970; Laing, 1975).

In the Aptian at the Luz section, the only angiosperm pollen types are diverse columellar monosulcates. Tricolpate pollen with reticulate sculpture appears ca. 11 m above the base of the lower Albian as inferred from the first occurrence of the dinoflagellate Dinoptrygium cladoides Delflandre. At Cresmina, reticulate tricolpates occur in the first samples above the unconformity, ca. 7 m below Dinoptrygium cladoides. Assuming Dinoptrygium cladoides is reliable as an Albian index fossil, these data indicate that the first tricolpates at Luz are lower Albian, but those at the Cresmina section could be either lower Albian or upper Aptian. In both sections, reticulate monosulcates with thickened sulcus margins (Retimonocolpites sp. ?) appear at approximately the same level. Similar pollen, described by Kemp (1968) as Clavatipollenites rotundus, coincides with the first reticulate tricolpates in the lowermost Albian of England (Kemp, 1968; Laing, 1975). Higher in the lower Albian in both Portuguese sections, reticulate tricolpates are joined by tricolpates with striate sculpture (Striatopolis spp.) and permanent tetrads of tricolpate grains, as well as additional monosulcata taxa.

Because of the low diversity of angiosperms at Carregueira, they provide limited evidence for correlation with the Portuguese marine sections. Small monosulcates of the Clavatipollenites hughesii type range throughout the Barremian—middle Albian, as in England (Kemp, 1968; Hughes, 1994) and Scandinavia (Vajda, 2001). Heimhofer et al. (2007) reported Stellatopolis barghoornii from the upper Aptian at Luz and the lower Albian at Cresmina, and other Stellatopolis species from the lower Aptian to the middle Albian. Stellatopolis, including forms close to Stellatopolis barghoornii, extends back to the Barremian in the Wealden (Hughes et al., 1979; Hughes, 1994), Gabon and Congo (Doyle et al., 1977; Doyle, 1992), and Egypt (Ibrahim, 2002). Heimhofer et al. (2007) did not include Afropolis in their occurrence charts because they did not consider it angiospermous, but they noted that it had “rare, but consistent occurrences”. Although Afropolis is most common in Northern Gondwana, where it ranges from upper Barremian to lower Cenomanian (Doyle et al., 1982; Gübeli et al., 1984; Penny, 1989; Regali and Viana, 1989; Doyle, 1992), it also occurs in the upper Barremian of the Scott Shelf, Canada (pers. comm. from F. Stone cited in Doyle et al., 1982) and the Wealden (Penny, 1989).

We observed no single tricolepate grains in the Carregueira samples, although triplecone pollen with reticulate, foveolate, and striate sculpture occurs in situ in mesofossils from other localities in the Famalicão Member of the Figueira da Foz Formation (von Balthazar et al., 2005; Pedersen et al., 2007; Priis et al., 2011; Mendes et al., 2014b). However, the tetrads identified as Senecotetradites sp. are made up of reticulate tricolpate monads. Heimhofer et al. (2007) reported that tricolpate tetrads of Virgo cf. amiantopolis and aff. Artipolis cf. praecox appear in the upper part of the lower Albian, but these species differ from the Carregueira tetrads: both have finer sculpture, while Virgo differs further in having poroid apertures.

In Delaware, Maryland, and Virginia, USA, Cretaceous deposition at the outcrop area began with the fluvial-deltaic deposits of the Potomac Group. The palynological sequence is based on cores from several wells in Maryland (Brenner, 1963) and Delaware (Brenner 1967; Doyle and Robbins, 1977), plus numerous outcrop samples (Brenner, 1963; Doyle, 1969, 1992; Wolfe and Pakiser, 1971; Doyle and Hickey 1976; Hickey and Doyle, 1977; Upchurch and Doyle, 1981). Because these deposits are almost entirely continental, they are dated mainly by palynological correlations with marine sequences elsewhere in Southern Laurasia.

Brenner (1963) proposed two informal palynozones in the Potomac, Zone I and Zone II, with the latter divided into Subzones II-A and II-B. This zonation was extended upward and refined by Doyle and Robbins (1977), Brenner (1963) first observed tricolpates at the base of Zone II, along with several index species of spores. However, Doyle and Hickey (1976) and Doyle and Robbins (1977) extended reticulate tricolpates down into upper Zone I (Arundel Clay and equivalents), along with monosulcates of the Clavatipollenites rotundus type (as aff. Retimonocolpites dividius). Ideas on the age of the Zone I-II boundary have varied. Brenner (1963) suggested that it corresponded to a hiatus between the Aptian and Albian, but Doyle and Hickey (1976) and Doyle and Robbins (1977) argued that upper Zone I was lowest Albian, based on the lower Albian appearance of reticulate tricolpates and Clavatipollenites rotundus in England (Kemp, 1968; Laing, 1975), while Doyle (1992) placed the boundary some way down in the Aptian. However, in a comparison of the Potomac and Portuguese sections, Hochuli et al. (2006) inferred a major hiatus between Zones I and II, and they considered upper Zone I lower Albian, based on the reticulate tricolpates. They dated lower Zone II as middle or even upper Albian, but a middle Albian age is favoured by correlations of middle Subzone II-B with a well-dated middle Albian flora in Oklahoma (Hedlund and Norris, 1968; Doyle and Robbins, 1977; Massoni et al., 2015; Tanrikulu et al., 2018). Finally, Tanrikulu et al. (2018) correlated a well-dated upper lower Albian palynoflora from the Glen Rose Formation of Texas with the upper lower Albian of Portugal and the missing interval between Zones I and II, based on the presence of both reticulate and striate tricolpates and Clavatipollenites rotundus.

Angiosperm pollen does not help much in correlating the Carregueira palynoflora with the Potomac sequence. Pollen of the Clavatipollenites hughesii type ranges throughout the Potomac, while Afropolis is exceedingly rare (Doyle et al., 1982; Doyle, 1992). Doyle and Robbins (1977) first recorded aff. Stellatopolis barghoornii in lower Subzone II-B, presumably middle Albian, but other species of Stellatopolis occur in lower Zone I (Doyle et al., 1975; Doyle and Hickey, 1976; Doyle, 1992). Tricolpate tetrads comparable to Senectotetradites are not known from the Potomac, but tetrads of the Virgo type, identified as Ajatipolis, appear in lower Subzone II-B (Doyle and Robbins, 1977).

Better evidence for correlation of the Carregueira flora with the Potomac Group, the Glen Rose, and the English section of Kemp (1970) comes from the spores (spores from the Portuguese coastal sections have not been described in detail). These include Zone II index spores of Brenner (1963), which appear at or near the base of Zone II. Given the evidence for a hiatus between Zones I and II, these could have appeared in the Potomac area at any time in the missing interval between the two zones, either before or after the time of the Glen Rose palynoflora. Most diagnostic are Apiculatisporis balsae (Fig. 4F), first observed by Kemp (1970) in the middle Albian of England, and Cybelosporites pannuceus (Fig. 4J, K). According to Singh (1971), Camarozonosporis insignis (Fig. 5A, B) is the same as Lycopodiumites ceratides of Brenner (1963), which Brenner found only in Subzone II-B; however, Kemp (1970) reported Camarozonosporis insignis from the mid-Aptian through the Albian of England. Cicatricosporis sp. A appears to be identical to a Glen Rose spore identified by Tanrikulu et al. (2018, pl. 1,
The success of the Carregueira site was deposited in a typical non-marine fluvial environment, with episodes of low-energy overbank sedimentation evidenced both by the sedimentology and the palynology.

The palynofloral assemblages show a predominance of hygrophilous taxa, mainly ferns. The occurrence of fresh-water algae assigned to Zygnemataceae, the colonial alga Schizosporis reticulatus, spores of the aquatic fern family Marsileaceae (Crybelosporites pannuceus), and seeds possibly related to Nymphaeales indicates freshwater conditions in small lakes, ponds or other water bodies on the fluvial floodplain (van Geel and Grenfell, 1996; Worobiec, 2014; Vajda et al., 2020). The abundance of spores ascribed to Anemiaceae, Cyatheaceae/Dicksoniaceae and Osmundaceae indicates the presence of a diverse community of ferns. Extant members of these families inhabit a wide range of environments, including stream and pond margins and forest understorey vegetation. The presence of bryophytes may indicate wet and enriched soil conditions on the forest floor.

The conifer element provides insights on the broader regional climate. Classopolis, the most abundant conifer pollen (14%), represents Cheirolepidiaceae, which are notable for their xeromorphic vegetative morphology and have long been considered indicators of hot and dry climates (Vakhrameev, 1970, 1981); with some exceptions (e.g., Tosolini et al., 2015), they are rare or absent at high palaeolatitudes. However, the frequency of Classopolis at Carregueira is comparable to that in the Potomac Group (average 16%: Brenner, 1963), and much lower than in the salt-bearing South Atlantic rift basins of Gabon, Congo, and Brazil, south of the palaeoequator, which appear to represent the most arid areas within the Southern Gondwana province (Brenner, 1976; Doyle et al., 1982; Carvalho et al., 2016). Areas of Southern Gondwana near the palaeoequator, such as Israel, Egypt, and Peru (Doyle et al., 1982; Schrank, 1983; Brenner, 1996; Carvalho et al., 2016; Mejía-Velasquez et al., 2018), have lower Classopolis frequencies (e.g., <11% in Egypt, <25% in Peru: Schrank, 1983; Mejía-Velasquez et al., 2018) and more ferns and Araucariaceae, suggesting they represent a wetter equatorial belt. However, Classopolis frequencies also vary with local environment, reaching 78% in marine-influenced facies in the Potomac Group and the lagoonal Glen Rose Formation of Texas (Upchurch and Doyle, 1981; Tanrikulu et al., 2018).

These observations suggest that the climate in central Portugal was similar to that of the Potomac area but wetter than that of the South Atlantic rift basins. It may have been comparable in humidity to wetter areas in Northern Gondwana but cooler, judging from the presence of bisaccate conifers. This picture is consistent with the clay mineralogy, which points to intense weathering under warm and wet conditions, as earlier inferred from coeval deposits of the western margin of Iberia based on mudstone geochemistry and mineralogy (Rocha and Gomes, 1995; Dinis et al., 2016). This evidence for a moderately humid climate in central Iberia contrasts with evidence for substantially drier conditions in southern Iberia (Heimhofer et al., 2012; Dinis et al., 2020). The dominance of angiosperm remains in the mesofossil flora, including delicate floral structures, indicates a relatively short transport distance and therefore implies that angiosperms grew within the lowland basin of deposition under wet conditions.

5.3. Comparison with palynofloras of other Aptian–Albian mesofossil localities

Informative palynofloras have been reported from other Lower Cretaceous mesofossil localities in the Lusitanian Basin. Studies of these palynofloras have mainly focused on taxonomic composition and its palaeoecological significance (Mendes et al., 2011, 2014a, 2017, 2018; Mendes and Friis, 2018).

The palynofloral assemblage from the Carregueira site shows similarities in general composition to other palynofloras from the lower part of the Figueira da Foz Formation in the Juncal region, at Chicalhão (Mendes et al., 2014a) and Nossa Senhora da Luz (Mendes and Friis, 2018), suggesting that they are probably more or less contemporaneous. Furthermore, in all three floras, fern spores and conifer pollen grains dominate the palynological assemblages quantitatively as well as qualitatively, while angiosperm pollen grains are subordinate. The most abundant fern spores at Chicalhão and Nossa Senhora da Luz are assignable to Anemiaceae and Cyatheaceae/Dicksoniaceae, elements of ground cover and tree ferns growing under humid conditions in riparian communities. Interestingly, no macrofossil or mesofossil remains of ferns have been documented from any of the three localities.

As in the Carregueira palynoflora, the most prominent component in the Chicalhão and Nossa Senhora da Luz conifer assemblages is Classopolis. Because Cheirolepidiaceae and other conifers recognized in the three palynofloras were presumably wind-pollinated, their pollen may have been transported to the deposition basin from drier habitats. The Carregueira palynoflora does differ from the other two in the presence of fresh-water algae, such as Ovolidites parvus, Ovolidites spiriggi and Schizosporis reticulatus. Reticulate monosulcate and Senectotetradites occur in all three floras, while Chicalhão has one reticulate tricolpate species. It is noteworthy that both the Carregueira and the Nossa Senhora da Luz palynofloras include Stellatopollis barghoornii and the primarily Gondwanan genus Afropollis, highlighting the possibility that Iberia served as a "bridge" between Northern Gondwanan and Southern Laurasia during the Early Cretaceous (see also Batten and Li (1987); Herigreen and Dueñas Jiménez (1990)).

As noted in earlier studies (Mendes et al., 2014a; Mendes and Friis, 2018), these and other Portuguese mesofossil floras show a combination of abundant and diverse angiosperm mesofossils with rare and low-diversity dispersed angiosperm pollen. Often many more pollen types are known in situ in stamens or on stigmas of mesofossils than in the dispersed palynoflora from the same deposits. Considering taxa in the mesofossil flora (see Material and methods), Canrightiopsis has pollen of the Clavatipollenites type (Friis et al., 2017), which occurs in the palynoflora (Fig. 6j), but Anacostia has pollen of the Similipollis type (Friis et al., 1997), which we have not observed. This contrast in abundance and diversity of angiosperms in the pollen and mesofossil records is not a universal feature of Aptian–Albian floras; in the Potomac Group, the upper Albian West Brothers mesofossil flora (Friis et al., 1988; Drinnan et al., 1991) is associated with unusually abundant and diverse angiosperm pollen, including several taxa illustrated by Doyle (1969, fig. 2).

A factor that might be involved is sedimentary size sorting: larger mesofossils might have settled out at the site of deposition while pollen remained suspended and was transported further. This could also mean that spores are better represented than angiosperm pollen, which is generally much smaller. However, the poor sorting of the deposits suggests that this explanation may not be sufficient. The greater diversity of in situ angiosperm pollen relative to dispersed pollen may reflect the role of mesofossils in "concentrating" pollen that was attenuated in the dispersed record because the parent plants were subordinate or insect pollinated. In
either case, more intensive scanning of slides might reveal pollen types previously only known in situ in mesofossils. A different sort of contrast is illustrated by Stellatopollis and Senecotetradites, which are seen in the palynoflares but have not been associated with mesofossils. This could be because their parent plants were growing farther from the site of deposition, or because their flowers had particularly low fossilization potential.

6. Conclusions
A rich and well-preserved palynoflora from the Famalicão Member of the Figueira da Foz Formation at the Carregueira locality in west-central Portugal provides new data on the vegetation and climate during the Early Cretaceous in this region. Palynological analysis reveals a typical Early Cretaceous palynoflora dominated by gymnosperm pollen and fern spores, many of which are assignable to Anemiceae (Schizaeales), Cyatheaceae/Dicksoniaceae (Cyatheales) and Osmundaceae.

The association of abundant spores and pollen of both the xerophytic extinct conifer family Cheirolepidae (Classopollis) and other conifers, particularly Araucariaeae and Pinaeae (bisaccate pollen), reflects the presence of wet fluvial habitats in the lowlands and drier but still moderately humid inland vegetation dominated by conifers. Angiosperms are poorly represented in the pollen assemblages but dominate the mesofossil flora, which also includes conifer seeds and numerous fragments of cheirolepidae twigs.

Comparisons with palynoflares from well-dated nearshore marine sequences in Portugal, England, and Texas suggest correlation with the lower Albian, corresponding to a hiatus between Zones I and II of the Potomac Group in the eastern USA. The palynoflora also includes Afropollis and Stellatopollis barghoornii, which are more characteristic of Northern Gondwana, highlighting the possible role of Iberia as a “bridge” between the Southern Laurasian and Northern Gondwanan floral provinces during the Early Cretaceous.

Acknowledgments
Many thanks are due to Mary Dettmann (Brisbane, Australia) for valuable suggestions on taxonomy of palynomorphs. We also thank Valeria Pérez Loinaze (Buenos Aires, Argentina), Emese Bodor (Budapest, Hungary), an anonymous reviewer, and the editor, Eduardo Koutsoukos, for their useful suggestions for improvement of the manuscript. This research was supported by grants from the Amadeu Dias Foundation, the Portuguese Science Foundation (FCT) through the project UIDB/04292/2020 to MARE - Marine and Environmental Sciences Centre, the Czech Grant Agency (project 20-06134S) and by the Swedish Research Council (VR, grant no. 2019-4061).

References

M.M. Mendes, V. Vajda, P.P. Cunha et al. Cretaceous Research 130 (2022) 105036