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A B S T R A C T   

Flame retardants are globally distributed contaminants that have been linked to negative health effects in 
humans and wildlife. As top predators, marine mammals bioaccumulate flame retardants and other contaminants 
in their tissues which is one of many human-imposed factors threatening population health. While some flame 
retardants, such as the polybrominated diphenyl ethers (PBDE), have been banned because of known toxicity and 
environmental persistence, limited data exist on the presence and distribution of current-use alternative flame 
retardants in marine mammals from many industrialized and remote regions of the world. Therefore, this study 
measured 44 legacy and alternative flame retardants in nine marine mammal species from three ocean regions: 
the Northwest Atlantic, the Arctic, and the Baltic allowing for regional, species, age, body condition, temporal, 
and tissue comparisons to help understand global patterns. PBDE concentrations were 100–1000 times higher 
than the alternative brominated flame retardants (altBFRs) and Dechloranes. 2,2′,4,5,5′-pentabromobiphenyl 
(BB-101) and hexabromobenzene (HBBZ) were the predominant altBFRs, while Dechlorane-602 was the pre-
dominant Dechlorane. This manuscript also reports only the second detection of hexachlorocyclopentadienyl- 
dibromocyclooctane (HCDBCO) in marine mammals. The NW Atlantic had the highest PBDE concentrations 
followed by the Baltic and Arctic which reflects greater historical use of PBDEs in North America compared to 
Europe and greater industrialization of North America and Baltic countries compared to the Arctic. Regional 
patterns for other compounds were more complicated, and there were significant interactions among species, 
regions, body condition and age class. Lipid-normalized PBDE concentrations in harbor seal liver and blubber 
were similar, but HBBZ and many Dechloranes had higher concentrations in liver, indicating factors other than 
lipid dynamics affect the distribution of these compounds. The health implications of contamination by this 
mixture of compounds are of concern and require further research.   

1. Introduction 

It is predicted that nearly 40% of all marine mammal species face 
extinction by 2050, especially polar species undergoing drastic, climate- 

related habitat change (Schipper et al., 2008). Climate change will result 
in the loss of pack ice, which is mandatory for ice-breeding seals, and 
lead to shifts in prey availability toward the poles (Kovacs and Lydersen, 
2008; Laidre et al., 2008; Peters et al., 2022). Marine mammals also face 
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several other threats including hunting, bycatch, ecotourism, under-
water noise, habitat destruction, and environmental pollution, which act 
synergistically to threaten future population health (Roman et al., 2013; 
Avila et al., 2018). 

As top predators in marine food webs, marine mammals are partic-
ularly susceptible to bioaccumulation of toxic contaminants (Ross, 2006; 
de Wit et al., 2020; Sonne et al., 2020). Studies from around the world 
have documented high concentrations of a wide range of environmental 
contaminants in marine mammals, including banned persistent com-
pounds such as polychlorinated biphenyls (PCBs) and dichlor-
odiphenyltrichloroethane (DDT), as well as many current-use chemicals 
such as flame retardants, pesticides, heavy metals, petroleum, and per- 
and polyfluoroalkyl substances (PFAS) (Shaw et al., 2009; Houde et al., 
2011; Law et al., 2014; Shaw et al., 2014; Letcher et al., 2018; Sonne 
et al., 2020). These chemicals, individually and in combination, likely 
have detrimental effects on marine mammal immune systems (De Swart 
et al., 1994; Ross et al., 1996; Levin et al., 2005; Kakuschke and Prange, 
2007; Desforges et al., 2017; White et al., 2017), endocrine systems 
(Jenssen, 2006; Ross, 2006; Tabuchi et al., 2006; Schwacke et al., 2012; 
Vanden Berghe et al., 2013; Villanger et al., 2013), reproduction (Dietz 
et al., 2015; Kellar et al., 2017), first year survival (Hall et al., 2009), and 
cancer rates (Dietz et al., 2015; Randhawa et al., 2015; Gulland et al., 
2020). 

Flame retardants, the halogenated or phosphate-based organic 
chemicals added to many products to increase their resistance to fire 
(Alaee et al., 2003; Birnbaum and Staskal, 2004), have become global 
contaminants found in air, water, sediments, and aquatic and terrestrial 
biota at all trophic levels (Hites, 2004; Law et al., 2006; Tanabe et al., 
2008; Shaw and Kannan, 2009; Guigueno and Fernie, 2017). Addition-
ally, many of these flame retardants have been linked to adverse health 
effects in wildlife and humans, including endocrine disruption (Costa 
and Giordano, 2007; Darnerud, 2008; Legler, 2008; Kim et al., 2014; 
Guigueno and Fernie, 2017), genotoxicity (Barón et al., 2016; Pereira 
et al., 2016), neurotoxicity (Viberg and Eriksson, 2011; Sun et al., 2016; 
Dong et al., 2021), and immunotoxicity (Martin et al., 2007; Watanabe 
et al., 2008; Lv et al., 2015). 

Because of their widespread distribution, persistence in the envi-
ronment, and demonstrated health effects, some flame retardants, such 
as the polybrominated diphenyl ethers (PBDEs), have been banned in 
many countries (Shaw et al., 2010; Covaci et al., 2011; Vorkamp and 
Rigét, 2014). However, banning PBDEs has led to increased production 
of previously low-volume chemicals and the development of numerous 
“novel” or “alternative” flame retardants. These alternative flame re-
tardants are now also being found in wildlife around the world (Vor-
kamp et al., 2015; Ali et al., 2017; Houde et al., 2017; Vorkamp et al., 
2018; Xiong et al., 2019; de Wit et al., 2020; Zafar et al., 2020) and 
evidence of their negative health effects on laboratory animals is accu-
mulating (Xiong et al., 2019; Lu et al., 2020; Marteinson et al., 2020; 
Dong et al., 2021), but little is known about their presence in and impact 
on marine mammals. 

Previous studies of flame retardant contamination in marine mam-
mals have generally focused on one geographic region or a limited 
number of species, thus making the understanding of global patterns 
more difficult. Therefore, this study measured concentrations of 44 
flame retardants, including legacy PBDE congeners, Dechlorane-related 
compounds, and alternative brominated flame retardants, in the blubber 
of nine marine mammal species from three northern ocean regions: the 
Northwest Atlantic represented by samples from the northeast U.S. 
coast, the Arctic represented by samples from Greenland and Iceland, 
and the Baltic represented by samples from Sweden. Both the Northwest 
Atlantic and the Baltic are surrounded by industrialized countries and 
have a long history of environmental contamination (Jensen et al., 1969; 
Bergek et al., 1992; Thompson, 2010; Shaw et al., 2011; Roos et al., 
2012; Airaksinen et al., 2014; Sonne et al., 2020). The remote Arctic 
waters were selected as a comparative region with expected lower levels 
of contamination. Also, all three regions are among areas predicted to 

experience the most extreme shifts in marine biomass due to climate 
change over the next 100 years, and therefore represent important areas 
for monitoring of sentinel marine species (Bryndum-Buchholz et al., 
2019). 

This study also compared contaminant concentrations in two 
different tissues by analyzing both liver and blubber samples that were 
available from some Northwest Atlantic and Baltic harbor seals (Phoca 
vitulina). Blubber acts as a major reservoir for lipophilic compounds and 
integrates lifetime accumulation of pollution (Ellisor et al., 2013), while 
the liver, which is metabolically active and blood-perfused, may be a 
better indicator of recent exposure and potential toxicity (Raach et al., 
2011). Tissue comparisons facilitate understanding the bioaccumulation 
dynamics of different chemicals and provide a more complete measure 
of contamination status. This comprehensive study enabled the evalu-
ation of spatial trends, age and species differences, temporal trends, 
tissue partitioning, and addresses the lack of available information 
regarding the toxicological implications of current levels of flame 
retardant contamination within three vulnerable regions. 

2. Materials and methods 

2.1. Samples 

Blubber samples were collected from nine species of marine mam-
mals: harbor seals, grey seals (Halichoerus grypus), ringed seals (Pusa 
hispida), harbor porpoises (Phocoena phocoena), white-sided dolphins 
(Lagenorhynchus acutus), white-beaked dolphins (Lagenorhynchus albir-
ostris), long-finned pilot whales (Globicephala melas), minke whales 
(Balaenoptera acutorostrata), and humpback whales (Megaptera 
novaeangliae). Each species was sampled from at least two of the three 
regions: the Northwest (NW) Atlantic (U.S.), the Baltic (Sweden), and 
the Arctic (Iceland and Greenland) (Fig. S1, Table 1). While some 
samples from Iceland and Greenland originated from latitudes south of 
the Arctic Circle and are technically from the Subarctic Zone (Fig. S1), 
the label “Arctic” is used for this group of samples for simplicity and to 
differentiate them from samples from the northern part of the Baltic 
which is also in the Subarctic Zone (Love, 1970). Tissue differences in 
contaminant concentrations were analyzed in a subset of the harbor 
seals from the NW Atlantic and Baltic with matched liver and blubber 
samples collected from the same individual. 

2.2. Sampling methods 

NW Atlantic (U.S.): Stranded marine mammals from Long Island, 
New York, to northern Maine in fresh or fair condition (Code 2 or 3) 
(Geraci and Lounsbury, 2005) were sampled between 1999 and 2016. 
For seals, weight, axillary girth, and standard length were measured 
during necropsy. Age category was estimated from body size and 
stranding date. For cetaceans, weight and length were measured when 
possible. Samples were archived in chemically clean glass jars in a 

Table 1 
Number of blubber samples by age (adult males and juveniles), species, and 
region.  

Species NW Atlantic Baltic Arctic  

Adult M Juv Adult M Juv Adult M Juv 

Harbor Seal 9 63 11 73 3 8 
Grey Seal 4 2 5 5 5 5 
Ringed Seal   5 5 11 12 

White-sided Dolphin 9   
White-beaked Dolphin   15 
Harbor Porpoise 9   
Pilot Whale 3  9 
Minke Whale 2  5 
Humpback Whale 1  13  
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freezer at − 40 ◦C (blubber) or − 80 ◦C (liver) until analysis. 
The Baltic (Sweden): Seals that were stranded, bycaught, or shot 

during the legal, annual subsistence hunt were sampled between 2000 
and 2016. Weight, axillary girth, and length were measured during 
necropsy. Age was determined by counting annual growth layers in the 
cementum of a tooth. All tissue samples were stored in aluminum foil 
and polyethylene bags in freezers at − 20 ◦C in the Environmental 
Specimen Bank (ESB) at the Swedish Museum of Natural History. 

Arctic (Greenland): Marine mammals that were stranded or killed 
during the legal annual subsistence hunts were sampled between 2010 
and 2016. Samples were archived at the Greenland Institute of Natural 
Resources in freezers at − 20 ◦C. 

Arctic (Iceland): Stranded or bycaught seals were sampled between 
2008 and 2010. Weight and standard length were measured during 
necropsy. Age category was determined from the body size, and in some 
cases, through dental examination. Samples were archived in poly-
ethylene bags at − 18 ◦C at the Icelandic Seal Center. 

Because some samples originated from dead stranded animals which 
may have been ill and poorly nourished at the time of death, while 
others originated from animals that were shot while presumably 
healthy, a condition index (weight (kg)/length (cm)) (Hall et al., 2003) 
was calculated for every animal with both length and weight measure-
ments. This index was incorporated into the analysis of contaminant 
concentrations. 

2.3. Chemical analysis 

The extraction methods for both blubber and liver and instrumental 
analysis are reported in detail elsewhere (Sun et al., 2022a,b). Briefly, 
approximately 0.5 g of wet blubber or liver was ground with diatoma-
ceous earth (Fisher Scientific, U.S.) and spiked with surrogate standards. 
The mixture was subjected to accelerated solvent extraction (Dionex 
ASE 350, Sunnyvale, USA) and subsequently purified by gel permeation 
chromatography (GPC) using a mixed solution of hexane:DCM (1:1, 
v/v). The extraction was further cleaned-up on silica-based solid-phase 
extraction (SPE; 2 g, Biotage, USA) with hexane:DCM (6:4, v/v), 
concentrated to 200 μL, and spiked with an internal standard (3′-flu-
oro-2,2′,4,4′,5,6′-hexabromodiphenyl ether; F-BDE 154). Instrument 
analysis was carried out on an Agilent 7890B gas chromatograph (GC) 
coupled to an Agilent 5977A mass spectrometer (Agilent Technologies, 
USA) operated in electron capture negative ionization (ECNI) mode. 

Quality assurance and control (QA/QC) procedures included spiking 
tests, blank control, and surrogate standard recoveries. Known amounts 
of target analytes along with surrogate standards were spiked with pork 
liver purchased from a local supermarket and processed with the 
aforementioned methods. The mean (± standard deviation; SD) re-
coveries of spiked FRs ranged from 77.4 ± 11.2% to 108 ± 7.1%. A 
procedural blank was processed along with every 10 samples. Only BDE 
47, BDE 209 and HBBZ were detectable in procedural blanks, with the 
levels generally below their limits of detection (LODs). The LOD of an 
analyte without detection in procedural blanks was defined as its 
instrumental response plus five times the SD of the noise; otherwise, it 
was determined as the average level in procedural blanks plus three 
times the SD of blank contamination. 

2.4. Statistical analysis 

Chemical concentrations below the LOD were replaced with half of 
the LOD for compounds that were detected in at least one sample from a 
species within a region. Individual compounds that were not detected in 
any samples from a species within a region were replaced with zero. All 
concentrations are reported on a lipid weight (lw) basis. 

For compounds with at least 50% detection in all samples, Gener-
alized Linear Models (GLM) were used to explore the effect of age class 
(adult M vs juvenile), region (NW Atlantic, Baltic, Arctic), species 
(harbor, grey, ringed seals), stranding year, and condition index on 

contaminant concentrations in blubber. Dummy variables were included 
for categorical factors with age = adult male, region = NW Atlantic, and 
species = harbor seal coded as the base for comparison. Since the dis-
tribution of contaminant concentrations was approximately log-normal, 
both Gaussian and Gamma models with a log link were evaluated for 
best fit, which was determined with Pearson residuals plotted against 
fitted values, normal probability plots of residuals, and Akaike Infor-
mation Criteria (AIC) (Zuur and Ieno, 2016). Only pinniped species were 
included in the GLM analysis because their sample sizes were robust, 
and all three regions were represented. Cetacean samples were only 
available from two regions and their sample sizes were smaller, so 
analysis of their contamination was more qualitative, but still valuable 
for comparative purposes. 

Wilcoxon matched-pairs signed-rank tests were used to compare 
blubber and liver tissues in harbor seals from the NW Atlantic and Baltic, 
and Kruskal-Wallis with Dunn’s post hoc tests or Wilcoxon Rank Sum 
tests were used to compare independent groups. All statistical analysis 
was conducted with StataIC ver. 15.1. An alpha level of 0.05 was used to 
determine significance of all statistical tests. 

Unlike the PBDEs which were marketed as products containing 
mixtures of congeners and are often reported in the literature as ΣPBDE 
concentrations, the Dechloranes and the alternative brominated flame 
retardants (altBFRs) are generally marketed as separate products or 
mixtures containing a limited number of compounds (Table S1). There is 
little consistency in the literature as to which compounds are included in 
analyses of Dechlorane or altBFR concentrations in the environment. 
Therefore, to make the results of this study comparable to previous 
research, Dechloranes and altBFRs, as groups, were used for descriptive 
and organizational purposes. Compounds from these groups that were 
detected frequently were statistically analyzed as individual compounds 
rather than as group sums. Compounds that were detected rarely were 
presented in summary tables and included in qualitative discussions. 

3. Results and discussion 

3.1. Compounds detected 

Of all 44 analyzed chemicals including 21 PBDEs, 9 Dechloranes, and 
14 altBFRs, only BDEs-206, -207, and − 208, Dechlorane-601, PBBZ and 
PBBA were not detected in any sample. All other compounds were 
detected in at least one sample, but there was significant variability 
among the species and regions. In general, PBDE concentrations were 
2–3 orders of magnitude higher than Dechlorane concentrations and 1–2 
orders of magnitude higher than the altBFRs. 

PBDEs: The tri-hexa PBDE congeners BDE-28, -47, − 49, − 99, − 100, 
− 153, and − 154 were detected in the majority (80–100%) of samples 
from the NW Atlantic and Baltic species (Tables S2 and S3). BDE-17, -66, 
and − 85 were detected rarely at very low concentrations. BDE-47 was 
detected in 100% of the samples originating from the Arctic, but the 
detection of other tri-hexa congeners varied greatly among species from 
this region (Table S4). 

Of the higher brominated congeners, BDE-183 was detected in 100% 
of the NW Atlantic cetacean samples, but only 72–88% of the pinniped 
samples. Other higher brominated congeners were detected in 0–67% of 
samples from different species. In samples from the Baltic, all higher 
brominated congeners were detected variably in 0–64% of samples. In 
seals from the Arctic, no higher brominated congeners above BDE-183 
were detected, but a few higher congeners were detected in two ceta-
cean species. BDE-209 was detected in 1–25% of harbor seals and grey 
seals from the NW Atlantic and Baltic and 11% of the pilot whales from 
the NW Atlantic, but was not detected in any other species from any 
region. 

Alternative BFRs: BB-101 and HBBZ were the predominant altBFRs in 
terms of detection frequency and concentration (Tables S2–S4). Other 
compounds that were regularly detected, particularly in NW Atlantic 
samples, include TBBZ, PBEB, BEH-TBP, BTBPE, and PBT. Overall, the 
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alternative BFRs had highly variable rates of detection among the spe-
cies from the different regions. 

Dechloranes: Dechlorane-602 was the only Dechlorane compound 
detected in all species from all regions, although rates varied from 62 to 
100% of samples from different species (Tables S2–S4). The NW Atlantic 
species and harbor seals from the Baltic had the greatest diversity of 
Dechlorane-related compounds in their blubber. All of the analyzed 
Dechlorane-related compounds, except for Dec-601, were detected in 
the NW Atlantic species and all but Dec-601 and Dec-604 were detected 
in harbor seals from Sweden. Dechlorane-603 and Anti-DP were also 
detected in two grey seal samples from the Baltic. In samples from the 
Arctic, Dec-603, Dec-604CB, Cl11-DP, Syn- and Anti-DP were detected 
in a few individuals in addition to the Dec-602 that was found in all 
Arctic species. 

Due to their high detection rates in all species and regions, ΣPBDEs, 
BB-101, HBBZ, and Dec-602 were included in statistical analyses. 
Summary results for all compounds are presented in Tables S2–S4. 

3.2. PBDE concentrations and composition 

Including all species, mean ± SD total PBDE concentrations in 
blubber were 2060 ± 4620 ng/g lw, 103 ± 102 ng/g lw, and 83.2 ± 113 
ng/g lw from the NW Atlantic, Baltic, and Arctic, respectively. These 
concentrations are within the range of previous studies of PBDEs in 
harbor seals between 2000 and 2005 (mean: 1385 and 3646 ng/g lw in 
adult males and pups, respectively) (Shaw et al., 2008), and white-sided 
dolphins between 1993 and 2000 (means: 1820 and 2410 ng/g wet 

weight in adult males and juveniles, respectively) (Tuerk et al., 2005) 
from the NW Atlantic. Previous studies of ringed seals from the Baltic 
between 2001 and 2015 (Range of annual means: 50–200 ng/g lw) 
(Bjurlid et al., 2018) and Greenland between 1994 and 2008 (mean: 
24.4 and 27.4 ng/g lw in juveniles and adults, respectively) (Vorkamp 
et al., 2011) were also very similar to the ringed seal results from the 
current study. 

In all species and regions, tetra-brominated BDE-47 was the most 
abundant congener accounting for 50–87% of the PBDE burden (Fig. 1). 
However, BDE-47 made up a greater proportion of the total PBDE 
burden in the pinnipeds (mean ± SD of all individuals: 75 ± 11%) than 
cetaceans (58 ± 11%) (t-test, t294 = 11.5, p < 0.001). Conversely, ce-
taceans had a greater proportion of the hexa- and hepta-brominated 
congeners BDE-154 (11 ± 9.4%), and BDE-183 (2.1 ± 2.3%) than the 
pinnipeds (BDE-154: 3.0 ± 3.5%, BDE-183: 0.43 ± 0.93%) (t-test, BDE- 
154: t294 = 10.2, p < 0.001; BDE-183: t294 = 8.7, p < 0.001) (Fig. 1). 
This difference between seals and cetaceans was also observed in harbor 
seals and harbor porpoises from the North Sea (Weijs et al., 2009) and in 
marine mammals from Japanese waters (Nomiyama et al., 2014). It may 
stem from dietary or metabolic differences between cetaceans and seals 
as previous research has found that cetaceans have a reduced ability to 
metabolize some non-planar contaminants due to lower CYP2B enzyme 
activity compared to pinnipeds (Bennett et al., 2009; Pangallo and 
Reddy, 2010). 

While BDE-209 often dominates PBDE composition in marine sedi-
ments (Zegers et al., 2003; Morales-Caselles et al., 2017), low detection 
and low concentrations of BDE-209 in high trophic level marine 

Fig. 1. PBDE, AltBFR, and Dechlorane composition in harbor seals (HS), grey seals (GS), ringed seals (RS), harbor porpoises (HP), white-sided dolphins (WsD), white- 
beaked dolphins (WbD), pilot whales (PW), minke whales (MW), and humpback whales (HW) from the NW Atlantic, Baltic, and Arctic. 
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mammals have been frequently reported (Johnson-Restrepo et al., 2005; 
Kajiwara et al., 2008; Tomy et al., 2008). Bioaccumulation of this 
congener is limited because it tends to bind to particles in air or water 
and is often debrominated or biotransformed into lighter, more bio-
accumulative congeners by lower trophic level organisms (Stapleton 
et al., 2004; Ross et al., 2009). 

For all Generalized Linear Models used to explore the influence of 
region, species, age class, year, and condition on PBDE concentrations, 
the Gamma distribution with a log link had a better fit to the data than 
the Gaussian distribution with a log link as indicated by lower AIC 
values. However, some model assumptions were violated with either 
distribution. Heteroscedasticity was apparent in the plots of residuals 
against fitted values and the residuals were not normally distributed. 
Therefore, the GLM was used to help interpret complex potential in-
fluences on contaminant concentrations, but no attempt was made to 
predict concentrations using the model coefficients. 

After removing one extreme outlier point to improve model fit (a NW 
Atlantic harbor seal juvenile, ΣPBDE = 44,000 ng/g lw), coefficients for 
region (Baltic and Arctic vs. NW Atlantic), stranding year, and age class 
(Juvenile vs. Adult M) were significant and condition index was 
marginally significant (Table S5). Inclusion of a region*species inter-
action term improved the AIC slightly and resulted in significant co-
efficients for region (Baltic: β = − 2.37 [95%CI = − 2.85 to − 1.88], p <
0.001; Arctic: β = − 4.21 [95%CI = − 4.92 to − 3.49], p < 0.001), 
stranding year (β = − 0.053 [95%CI = − 0.099 to − 0.0075], p < 0.05), 
age class (β = − 1.27 [95%CI = − 2.11 to − 0.42], p < 0.01), condition 
index (β = − 1.97 [95%CI = − 3.78 to − 0.17], p < 0.05) and the inter-
action terms for Baltic*grey seal (β = 1.38 [95%CI = 0.15–2.62], p <
0.05) and Arctic*grey seal (β = 2.31 [95%CI = 1.05–3.56], p < 0.001). 
Unfortunately, no length or weight information was available for the 
ringed seals from Greenland, so when condition index was included in 
the model, these samples were excluded. If condition index was 
removed, then the best model resulted in significant coefficients for 
region (Baltic: β = − 2.44 [95%CI = − 2.79 to − 2.09], p < 0.001; Arctic: 
β = − 4.15 [95%CI = − 4.82 to − 3.48], p < 0.001), stranding year (β =
− 0.075 [95%CI = − 0.11 to − 0.039], p < 0.001), grey seal species (β =
− 1.62 [95%CI = − 2.50 to − 0.74], p < 0.001) and the region*grey seal 
interaction (Baltic: β = 1.81 [95%CI = 0.71–2.90], p < 0.01; Arctic: β =
2.24 [95%CI = 1.03–3.45], p < 0.001) (Table S5). 

The consistent significant coefficients for regional effects on PBDE 
concentrations likely result from two factors. First, historically, the U.S. 
and Canada had much greater usage of PBDEs than Europe resulting in 
greater PBDE contamination of human tissues, wildlife, dust, and food 
from North America than Europe (Hites, 2004; Costa et al., 2008; Shaw 
and Kannan, 2009). Additionally, industrialized Europe, and particu-
larly the historically polluted Baltic waters, are generally more 
contaminated than the remote Arctic (Law et al., 2014; de Wit et al., 
2020). Second, condition index was a significant predictor of PBDE 
concentration, and it was closely tied to regional differences. The ju-
venile harbor seals from the Swedish waters and the Arctic were older, 
longer, and in significantly better body condition than the juvenile 
harbor seals from the NW Atlantic which were mostly recently weaned 
pups (Kruskal-Wallis test, X2 = 68.3, p < 0.001) (Fig. S2). Since 
contaminant concentrations in blubber can increase during periods of 
weight loss due to illness and can decrease via dilution when health and 
feeding are resumed (Hall et al., 2008), the difference in condition be-
tween harbor seals from different regions likely has an influence on 
PBDE concentration differences. Interestingly, there is no significant 
difference in condition among regions for grey seals or ringed seals 
(Fig. S2). 

The significant negative coefficients for stranding year are consistent 
with previous analyses of PBDE contamination in harbor seals from 
Maine and Sweden (Sun et al., 2022a), and ringed seals from the Baltic 
(Bjurlid et al., 2018), and Arctic (Dam et al., 2011; Vorkamp et al., 
2011). PBDE contamination in the Baltic and Arctic peaked in the early 
2000s and then consistently declined in most species (Sellström et al., 

1993; Dam et al., 2011; Vorkamp et al., 2011; Brown et al., 2018). PBDE 
decline starting in the early part of this century likely reflects bans of 
penta- and octaBDE commercial products that were implemented in the 
U.S. and Europe around that time (Shaw et al., 2010; Covaci et al., 
2011). However, continued use of decaBDE in the United States until its 
recent ban in 2021 (U.S. Environmental Protection Agency, 2021) 
means that PBDE contamination is likely to remain a concern for many 
years in U.S. coastal environments. 

Age class also had a significant coefficient in the best model of PBDE 
contamination that included the condition index. There were no adult 
female seals in this study and a preliminary analysis of PBDE concen-
trations in juvenile harbor seals from the Baltic and the NW Atlantic 
found no difference between young males and females. Therefore, all 
juveniles were grouped together and compared with adult males. Like 
many lipophilic contaminants, PBDEs are passed from mothers to pups 
in utero or through lactation leaving the youngest pups with high con-
centrations (Weijs et al., 2009; Vanden Berghe et al., 2012; Wang et al., 
2012). However, the majority of a seal’s body burden is acquired 
through their seafood diet and concentrations often increase with age 
after the first year of life in males (Addison et al., 2020), although shifts 
in diet with age can sometimes alter this pattern (Aguilar et al., 1999). 
When adult male and juvenile harbor seals, grey seals, and ringed seals 
were analyzed separately from each region, there was a trend for adult 
males to have higher PBDE concentrations than juveniles for all seals 
except harbor seals from the Baltic where juveniles (mean ± SD, me-
dian: 108 ± 91.0, 72.3 ng/g lw) were significantly more contaminated 
than adult males (43.9 ± 33.5, 35.8 ng/g lw) (Wilcoxon rank-sum test, z 
= − 2.92, p < 0.01) (Fig. 2). The reason for the different age-related 
pattern in the harbor seals from Swedish waters is unclear. 

The significant interaction between region and species for grey seals 
was also noteworthy. For the seals from the NW Atlantic, grey seals had 
lower PBDE concentrations than harbor seals. However, from the Baltic 
and Arctic, grey seals had comparable or even slightly higher levels of 
PBDE contamination than the harbor seals (Fig. 2). Along the Swedish 
coastline, grey and ringed seal populations are concentrated on the east 
coast in the Baltic proper and the northern Bothnian Bay region, while 
harbor seals are more concentrated along the west coast in Skagerrak 
and Kattegat (Svensson, 2012; Scharff-Olsen et al., 2019). There is some 
population overlap between grey and harbor seals in the southwest 
Baltic and the Kattegat–Skagerrak region (Svensson, 2012). Historically, 
contaminant levels in fish have been higher in the Baltic proper than 
along the Atlantic coast of western Sweden (Olsson et al., 1994; Bignert 
et al., 1998). The historical geographic differences in contamination 
coupled with limited population overlap likely explain differences in 
contamination among the Baltic seal species. In contrast, the harbor seal 
and grey seal populations from the northwest Atlantic have significant 
overlap in habitat (NMFS, 2021; 2022). Therefore, the difference in 
contamination between the two species likely results from dietary dif-
ferences or microhabitat use. 

3.3. AltBFR concentrations and composition 

Total altBFR concentrations from each region were (mean ± SD) 
23.6 ± 49.2 ng/g lw, 4.68 ± 4.98 ng/g lw, and 13.7 ± 15.5 ng/g lw for 
all samples from the NW Atlantic, Baltic, and Arctic, respectively. BB- 
101 and HBBZ contributed the most to altBFR contamination (54 ±
16% and 23 ± 14% of total altBFRs, respectively). A similar predomi-
nance of BB-101 and HBBZ among the alternative BFRs was previously 
described in ringed seals from the Canadian Arctic (Houde et al., 2017). 
These were followed by EHTBB (8.0 ± 12%) and PBT (5.5 ± 6.8%) 
(Fig. 1). 

HBBZ and BB-101 were previously analyzed in harp (Pagophilus 
groenlandicus) and hooded seals (Cystophora cristata) from the Gulf of 
Maine in the NW Atlantic (Montie et al., 2010). HBBZ was not detected 
in either species, but BB-101 was detected in hooded seals (Range: nd – 
4.4 ng/g lw). These concentrations were similar to the NW Atlantic grey 
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seals in the current study, but lower than the harbor seals. In Canadian 
Arctic ringed seals, concentrations ranged from nd to 2.2 ng/g lw and nd 
to 0.29 ng/g lw for HBBZ and BB-101, respectively (Houde et al., 2017). 
In the current study, concentrations and detection rates of BB-101 were 
higher in the ringed seals from both the Baltic and Greenland/Iceland 
region of the Arctic than the Canadian Arctic, but the HBBZ results were 
similar. 

The Baltic was unique in that HCDBCO accounted for means of 
4.8–14% of the altBFR contamination among the three seal species, but 
this compound was otherwise only detected in two humpback whales 
from the Arctic. This compound was previously reported in fish from the 
Baltic (Rjabova et al., 2016), but to our knowledge, this is only the 
second report of the presence of this flame retardant chemical in marine 
mammal tissues. Law et al. (2013) reported DBHCTD, another 

abbreviation for hexachlorocyclopentadienyl-dibromocyclooctane, in 
blubber of harbor porpoises from U.K. waters at concentrations ranging 
from (0.57–3.8 ng/g lw). The reason for the regional difference in this 
study is unclear since little information about the global usage of 
HCDBCO or DBHCTD is available. Previous studies have detected 
HCDBCO in a herring gull liver (Gentes et al., 2012), peregrine falcon 
eggs (Guerra et al., 2012), and human serum and breast milk (Zhou 
et al., 2014) from eastern Canada. Therefore, this compound is clearly 
present in the northern part of the Northwest Atlantic region bordered 
by Canada, but it was not found in marine mammals from the nearby U. 
S. coast of the Gulf of Maine in this study. 

For the GLM analysis of both HBBZ and BB-101, the same juvenile 
harbor seal from the NW Atlantic had concentrations that were extreme 
outliers (106 ng/g and 175 ng/g lw, respectively), so this individual was 

Fig. 2. Concentrations of sum PBDEs, HBBZ, BB-101 and Dec-602 in harbor seals, grey seals, and ringed seals from the NW Atlantic, Baltic, and Arctic by age class. 
Boxplots indicate median (middle bar), 75th and 25th percentiles (top and bottom of boxes), and 95th and 5th percentiles (whiskers). 
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removed to improve model fit. For HBBZ concentrations, the best model 
that included condition index resulted in significant coefficients for re-
gion (Arctic: β = − 2.49 [95%CI = − 3.51 to − 1.48], p < 0.001), age class 
(β = − 1.66 [95%CI = − 3.00 to − 0.32], p < 0.05), and condition (β =
− 3.33 [95%CI = − 6.39 to − 0.26], p < 0.05) (Table S6). No interaction 
coefficients were significant, so they were not retained in the model. 
Without condition index, the only significant coefficients in the best 
model were for region (Baltic: β = − 1.02 [95%CI = − 1.61 to − 0.43], p 
< 0.01; Arctic: β = − 2.43 [95%CI = − 3.65 to − 1.21], p < 0.001), and 
the region*species interaction (Baltic*grey seal: β = 2.08 [95%CI =
0.16–4.01], p < 0.05) (Table S6). 

For BB-101, the best model that included condition index resulted in 
significant coefficients for region (Baltic: β = − 0.78 [95%CI = − 1.30 to 
− 0.28], p < 0.01; Arctic: β = − 2.63 [95%CI = − 3.39 to − 1.88], p <
0.001), and the region*species interaction (Baltic*grey seal: β = 2.14 
[95%CI = 0.86–3.42], p < 0.01; Arctic*grey seal: β = 1.87 [95%CI =
0.54–3.19], p < 0.01) (Table S7). Without condition index, region 
(Baltic: β = − 0.81 [95%CI = − 1.14 to − 0.49], p < 0.001; Arctic: β =
− 2.53 [95%CI = − 3.15 to − 1.92], p < 0.001), species (GS: β = − 1.29 
[95%CI = − 2.06 to − 0.51], p < 0.01), stranding year (β = − 0.45 [95% 
CI = − 0.079 to − 0.010], p < 0.05), and the region*species interaction 
(Baltic*grey seal: β = 2.47 [95%CI = 1.46–3.49], p < 0.001; Arctic*grey 
seal: β = 1.80 [95%CI = 0.69–2.91], p < 0.01) coefficients were sig-
nificant (Table S7). 

Many of the significant factors influencing HBBZ and BB-101 con-
centrations were very similar to those influencing PBDE concentrations 
discussed above. In general, concentrations from the NW Atlantic were 
higher than the Baltic and the Arctic although the significant region*-
species interactions indicate that the regional differences were not 
consistent across the three seal species. Among harbor seals, the NW 
Atlantic region had the highest concentrations of these altBFRs (Fig. 2). 
However, among grey seals, concentrations in the Baltic tended to be the 
highest. The seals from the Arctic consistently had the lowest concen-
trations in all three species. 

Like the model for PBDEs, the GLM analysis of the factors that 
affected HBBZ and BB-101 concentrations resulted in a significant co-
efficient for body condition for HBBZ, but not BB-101 concentrations. 
Additionally, there was a significant negative coefficient for stranding 
year on BB-101 concentrations, but not HBBZ. There are few studies of 
temporal trends of alternative BFRs in marine mammal tissues. The 
significant decreasing trend for BB-101 is consistent with a previous 
analysis of these compounds in harbor seals from Sweden, but there was 
no trend in seals from Maine (Sun et al., 2022a). Simond et al. (2017) 
report a decreasing trend in HBBZ concentrations in beluga whales from 
the Canadian Arctic between 1997 and 2013, but that study did not 
analyze BB-101. Given the wide variety of alternative brominated flame 
retardants currently being used, additional research is needed to un-
derstand their temporal patterns in marine mammals and other wildlife. 

3.4. Dechlorane concentrations and composition 

Total Dechlorane concentrations from each region were (mean ± SD) 
3.59 ± 6.41 ng/g lw, 2.93 ± 6.42 ng/g lw, and 0.91 ± 1.22 ng/g lw for 
all samples from the NW Atlantic, Baltic, and Arctic, respectively. Dec- 
602 accounted for the majority of the Dechlorane contamination in all 
species (70 ± 27%). Concentrations of the other compounds were highly 
variable among species from different regions (Fig. 1). 

Most previous studies of Dechlorane-related compounds in marine 
mammals focused on the syn- and anti-Dechlorane Plus isomers, 
although those studies that included Dec-602 usually detected it (Barón 
et al., 2015; Simond et al., 2017; Sutton et al., 2019). There are no other 
studies of Dechlorane compounds in marine mammals from the U.S. 
coast of the NW Atlantic. However, compared to harbor seals from the 
Pacific coast of the U.S. (Sutton et al., 2019), the harbor seals from the 
current study had similar detection rates and concentrations of syn- and 
anti-DP but lower concentrations of Dec-602 (Median: 2.2 vs. 0.86 ng/g 

lw in Pacific vs Atlantic, respectively). For the Baltic, de Wit et al. (2020) 
reported concentrations of syn- and anti-DP in grey seals (mean: 6.0 and 
26 ng/g, syn- and anti-DP, respectively) that were one to two orders of 
magnitude higher than the grey seals in the current study but concen-
trations in harbor seals (mean: 0.046 and 0.040 ng/g, syn- and anti-DP 
respectively) were similar. Syn- and anti-DP were not detected in Arctic 
ringed seals in the current study, but they were previously reported at 
low concentrations in ringed seals from east and west Greenland (Vor-
kamp et al., 2015). 

For the GLM on Dec-602 concentrations, the Gamma model with a 
log link had the best fit of all available models, but the plots of fitted 
values vs. residuals included more heteroscedasticity than for the 
brominated compounds. Therefore, more data is required to clearly 
understand Dec-602 dynamics in marine mammals. Unlike the PBDEs 
and the altBFRs, there were no extreme outlier points for Dec-602 
concentrations. For models including condition index, the best model 
resulted in significant coefficients for region (Baltic: β = − 1.02 [95%CI 
= − 1.64 to − 0.39], p < 0.01; Arctic: β = − 0.89 [95%CI = − 1.75 to 
− 0.023], p < 0.05) and age class (β = − 2.16 [95%CI = − 3.20 to − 1.12], 
p < 0.001) (Table S8). None of the interaction effects were significant so 
they were not retained in the model. Without condition index, the best 
model had significant coefficients for region (Arctic: β = − 1.58 [95%CI 
= − 2.75 to − 0.41], p < 0.01), species (ringed seal: β = − 1.28 [95%CI =
− 1.99 to − 0.58], p < 0.001), age class (β = − 1.32 [95%CI = − 2.20 to 
− 0.44], p < 0.01) and the region*age interaction (Baltic*juvenile: β =
− 1.50 [95%CI = − 2.68 to − 0.32], p < 0.05) (Table S8). 

Unlike the PBDEs and altBFRs, concentrations of Dec-602 were very 
similar in the NW Atlantic and Baltic regions. The Arctic had somewhat 
lower concentrations among adult male harbor and ringed seals than the 
other two regions, but concentrations among juveniles were similar for 
all three regions and species (Fig. 2). There was a clear trend for higher 
Dec-602 concentrations in adult males than juveniles for all three spe-
cies from the NW Atlantic and Baltic which may result from low rates of 
in utero maternal transfer of this compound as was found in some sharks 
(Marler et al., 2018) and sperm whales (Zaccaroni et al., 2018). In the 
Arctic, the harbor seal and ringed seal adult males had very similar 
concentrations to the juveniles (Fig. 2). The reason for the variable 
patterns in age effects in the three regions is unclear but may be related 
to the relatively small sample sizes of adults and juvenile harbor seals 
from the Arctic compared to the other regions. 

3.5. Pinniped and cetacean comparisons 

Samples from six cetacean species were available from the NW 
Atlantic and from the Arctic, but small sample sizes prevented analysis 
by all of the demographic factors considered for the pinnipeds (Table 1). 
Therefore, for baseline environmental monitoring purposes on some 
poorly-studied species, qualitative comparisons of contaminant con-
centrations were made. Overall, there is a pattern that the highest PBDE 
and altBFR concentrations were found in the small toothed whales 
(white-sided dolphins, white-beaked dolphins, and pilot whales), fol-
lowed by the baleen whales (minke and humpback), and the seals 
(Fig. 3). The other small odontocete sampled from the NW Atlantic, the 
harbor porpoise, had contaminant concentrations similar to the baleen 
whales and somewhat lower than the white-sided dolphins and pilot 
whales. For PBDEs, the NW Atlantic harbor seals had elevated concen-
trations similar to the harbor porpoise, but harbor seals were less 
contaminated than the cetaceans for the two altBFRs. There was little 
difference among the species for Dec-602 concentrations, although in 
both regions, pilot whales had somewhat higher concentrations than the 
other species (Fig. 3). 

Many halogenated chemicals have been shown to biomagnify in 
marine food webs such that there are positive relationships between 
trophic level and contaminant concentration (Tomy et al., 2008; de Wit 
et al., 2010; Liu et al., 2021) although trophic level relationships for 
PBDEs have shown mixed patterns due to species-specific metabolic 
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differences (de Wit et al., 2010) or dietary specialization (Pinzone et al., 
2015). The marine mammals in this study are all high trophic level 
predators, but on average, there are some differences in their trophic 
level. From a broad diet-based analysis, Pauly et al. (1998) estimated a 
trophic level of 3.4 and 3.6 for the baleen minke and humpback whales, 
respectively. The three seal species have estimated trophic levels 
ranging from 3.8 to 4.0 and the four toothed whales range from 4.1 to 
4.4 (Pauly et al., 1998). Therefore, it is possible that broad trophic dif-
ferences among the species explain some of the variability in flame 
retardant contamination, but it is likely that age composition, time 
trends, and regional dietary differences also play significant roles. More 
research is needed to understand the dynamics of contamination in these 
cetacean species. 

3.6. Tissue comparisons 

PBDE concentrations in matched liver and blubber samples from 
Baltic and NW Atlantic harbor seals showed inconsistent patterns in the 
two regions (Tables S9 and S10). Some of the tri-hexa PBDEs had higher 
concentrations in blubber than liver in the Baltic seals (BDE-49, -100, 
and − 153) while BDE-138 had higher concentrations in liver. In the NW 
Atlantic, BDE-47, -153, − 154 had higher concentrations in liver while 
BDE-66 was higher in blubber. In both regions, higher-brominated 
PBDEs were either not significantly different between tissues or not 
comparable due to low detection in one or both tissues. For total PBDEs, 
liver concentrations were higher in the NW Atlantic, but there was no 
difference between the tissues in the seals from the Baltic. 

Many previous studies found that tri-hexa PBDE concentrations were 
closely tied to the lipid content of the tissues and the ratios of lipid- 
normalized concentrations were generally equal to one (Yordy et al., 
2010; Raach et al., 2011). However, Moon et al. (2010) reported greater 
PBDE concentrations in blubber than liver in minke whales and common 
dolphins from Korea. Therefore, the inconsistent patterns in the harbor 
seals from the NW Atlantic and Baltic may be a result of chance, an 
artifact of a relatively small sample size, or some aspect of dietary dif-
ferences between the two regions. 

In both regions, total altBFR and HBBZ concentrations were higher in 
liver than blubber (Tables S9 and S10). In the Baltic samples, TBBZ and 

HCDBCO concentrations were higher in blubber, but detection rates 
were low for both compounds (3.3–50%). Studies of tissue partitioning 
for the alternative brominated flame retardants, particularly between 
liver and blubber of marine mammals, are very rare. Berger et al. (2023) 
found concentrations of some alternative BFRs including β- and γ-hex-
abromocyclododecane (HBCD), TBB, and decabromodiphenyl ethane 
(DBDPE) were higher in liver than blubber of harbor seal pups. Andvik 
et al. (2021) measured concentrations of a suite of legacy and emerging 
contaminants, including HBBZ, in blubber and muscle tissues of killer 
whales from Norway. On a lipid-weight basis, HBBZ concentrations 
were higher in muscle than blubber for five individuals with matched 
tissues samples. It was also higher in liver than blubber in one neonate. 
These studies provide some evidence that the bioaccumulation of HBBZ, 
as well as some other alternative BFRs, may not be entirely related to the 
lipid content of the tissue. There may be an affinity for blood-perfused 
tissues such as muscle or liver, but the mechanism for this dynamic is 
unclear. 

Dechlorane concentrations were consistently higher in liver than 
blubber from both regions (Tables S9 and S10). In the NW Atlantic, there 
were significant tissue differences for Dec-602, -604, and anti-DP, while 
in the samples from the Baltic, there were differences for Dec-602, -603, 
syn-DP and anti-DP. There were no Dechlorane compounds with 
significantly higher concentrations in blubber. Although Dechlorane 
compounds are highly lipophilic (LogKow range: 8.1–11.3) (Peng et al., 
2014) and their wet weight concentrations are strongly correlated with 
the lipid content of the tissues (Yin et al., 2020), others have found that 
lipid-adjusted ratios between tissues were greater or less than one 
indicating that factors other than lipid content influence the distribution 
of these compounds (Yin et al., 2020). In human tissues, the 
lipid-adjusted partitioning ratios of syn-DP and anti-DP between breast 
milk and maternal serum were 0.43 and 0.47, respectively (Ben et al., 
2013) and between adipose tissue and maternal serum were 0.36 and 
0.35, respectively (Yin et al., 2020). These authors suggest that DP may 
interact with certain serum macromolecules that have a greater impact 
on the tissue partitioning than just the lipid content. Since liver is a 
highly blood-perfused tissue compared to blubber, a similar mechanism 
might be acting in these marine mammal tissues. 

Fig. 3. Concentrations of sum PBDEs, HBBZ, BB-101, and Dec-602 in marine mammals from the NW Atlantic (blue), and the Arctic (orange). Boxplots indicate 
median (middle bar), 75th and 25th percentiles (top and bottom of boxes), and 95th and 5th percentiles (whiskers). Species abbreviations: harbor seals (HS), grey 
seals (GS), ringed seals (RS) harbor porpoises (HP), white-sided dolphins (WsD), white-beaked dolphins (WbD), pilot whales (PW), minke whales (MW), and 
humpback whales (HW). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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3.7. Health implications 

Numerous studies have linked PBDEs to a range of health effects in 
marine mammals and humans (Shaw et al., 2010; Linares et al., 2015; 
Bartalini et al., 2022). However, since it is nearly impossible to perform 
controlled studies on live marine mammals, understanding the health 
effects of contaminant exposure stems from the “weight of evidence” 
(Ross, 2006). This includes evidence from correlative observational 
studies (Hall et al., 2003, 2009; Gabrielsen et al., 2015; Hoydal et al., 
2016), extrapolation from laboratory animal response (Lema et al., 
2007; Viberg and Eriksson, 2011; Kodavanti et al., 2015), and the use of 
in vitro cell lines for dose-response studies (Frouin et al., 2010; McKinney 
et al., 2011; Ishibashi et al., 2018; Rajput et al., 2021). Derivation of a 
threshold level of PBDE contamination in blubber that is likely to have 
significant health effects, as has been proposed and often cited for PCBs 
(Kannan et al., 2000; Murphy et al., 2015; Jepson et al., 2016), has 
proven challenging. The only PBDE threshold regularly cited for marine 
mammals, which was derived from young grey seals, is 1500 ng/g lw in 
blubber as a level that likely indicates endocrine disruption (Hall et al., 
2003). In the current study, only marine mammals from the NW Atlantic 
exceeded this level of PBDE contamination (35% harbor seals, 78% 
white-sided dolphins, 22% harbor porpoises, 67% pilot whales, and the 
one humpback whale). 

Some laboratory studies have indicated that the dose-response curve 
for PBDE congeners is more likely to be non-linear, or hormetic, where 
response is enhanced at low doses and inhibited at middle or higher 
doses (Calabrese and Baldwin, 2003; Hall et al., 2003). Therefore, 
although convenient, a threshold model based on one species’ response 
may not be the most appropriate tool for evaluating health effects of 
PBDEs in many marine mammal species. 

For less-studied compounds such as many of the altBFRs and Dech-
loranes, the understanding of potential health effects in marine mam-
mals is very poor. Additionally, as has been demonstrated in this study, 
marine mammals are never exposed to just one chemical at a time. They 
are simultaneously exposed to a cocktail of chemicals that may be syn-
ergistic or antagonistic in their effects (Cullon et al., 2005; Ross, 2006; 
Dietz et al., 2015). So, while it can be confidently stated that contami-
nant exposure poses a significant challenge to the health and well-being 
of marine mammal populations, further research is required to under-
stand the exact nature and extent of these effects. 

3.8. Study limitations 

This study has some limitations. Marine mammal samples are diffi-
cult to obtain, particularly from some of the cetacean species. Therefore, 
the ideal study design with large sample sizes that are evenly distributed 
among species, age classes and regions was not possible. Having uneven, 
smaller sample sizes reduced power and limited some of the potential for 
robust statistical methods. However, this limitation applies to almost 
every marine mammal study, so it is important for scientists to synthe-
size patterns observed in many studies to understand the environmental 
and ecological factors affecting these species. Additionally, the mixture 
of samples from stranded, bycaught, and hunted animals added another 
complication to the analysis. The inclusion of a condition index in the 
GLM analysis accounted for some of the variability introduced by the 
different sample sources, but since length and weight measurements 
were not available for all seals, this was an imperfect solution. However, 
even with these limitations, this study provides extensive baseline and 
comparative data for many species and poorly studied contaminants 
from a broad geographic area. 

4. Conclusions 

This multi-regional and multi-species study of flame retardant 
contamination established that all analyzed species from every region 
carried body burdens of a complex mixture of legacy and alternative 

brominated and chlorinated flame retardants. Although concentrations 
of most chemicals were higher near the industrialized U.S. and Sweden 
than in the Arctic, the detection of these chemicals in Arctic species, at 
least at low levels, demonstrates their potential for long-range atmo-
spheric and aquatic distribution. Contaminant concentrations were also 
influenced by age, species metabolism and diet, body condition, and 
time trends, often in complex combinations. While most marine 
mammal contaminant studies rely on blubber tissue because of the ease 
of collection and greater availability of sample material, some chemicals 
tend to interact with proteins or other macromolecules in blood rather 
than the lipids in blubber making them more likely to be detected in 
liver tissue than blubber. Inclusion of multiple tissue types in studies of 
contamination allows for better estimation of body burdens. Additional 
research is needed to understand the health implications of these 
chemical body burdens. 
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Peters, K.J., Stockin, K.A., Saltré, F., 2022. On the rise: climate change in New Zealand 
will cause sperm and blue whales to seek higher latitudes. Ecol. Indicat. 142, 109235 
https://doi.org/10.1016/j.ecolind.2022.109235. 

Pinzone, M., Budzinski, H., Tasciotti, A., Ody, D., Lepoint, G., Schnitzler, J., et al., 2015. 
POPs in free-ranging pilot whales, sperm whales and fin whales from the 
Mediterranean Sea: influence of biological and ecological factors. Environ. Res. 142, 
185–196. https://doi.org/10.1016/j.envres.2015.06.021. 

Raach, M., Lebeuf, M., Pelletier, E., 2011. PBDEs and PCBs in the liver of the St Lawrence 
Estuary beluga (Delphinapterus leucas): a comparison of levels and temporal trends 

M.L. Berger et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/S0269-7491(03)00149-0
https://doi.org/10.1016/S0269-7491(03)00149-0
https://doi.org/10.1021/es9004398
https://doi.org/10.1021/es035082g
https://doi.org/10.1021/es035082g
https://doi.org/10.1021/es104326w
https://doi.org/10.1016/j.envpol.2017.01.023
https://doi.org/10.1016/j.envres.2016.04.012
https://doi.org/10.1021/acs.est.8b02501
https://doi.org/10.1021/acs.est.8b02501
https://doi.org/10.1038/224247a0
https://doi.org/10.1289/ehp.8057
https://doi.org/10.1038/srep18573
https://doi.org/10.1021/es051551y
https://doi.org/10.1016/j.envpol.2007.12.034
https://doi.org/10.1016/j.envpol.2007.12.034
https://doi.org/10.46867/ijcp.2007.20.02.07
https://doi.org/10.1080/10807030091124491
https://doi.org/10.3354/esr00775
https://doi.org/10.3354/esr00775
https://doi.org/10.1016/j.chemosphere.2013.12.064
https://doi.org/10.1289/ehp.1408504
http://refhub.elsevier.com/S0269-7491(23)01257-5/sref59
http://refhub.elsevier.com/S0269-7491(23)01257-5/sref59
http://refhub.elsevier.com/S0269-7491(23)01257-5/sref59
https://doi.org/10.1890/06-0546.1
https://doi.org/10.1016/j.chemosphere.2005.12.007
https://doi.org/10.1016/j.envint.2014.01.006
https://doi.org/10.1016/j.envint.2013.08.009
https://doi.org/10.1016/j.chemosphere.2008.04.081
https://doi.org/10.1016/j.chemosphere.2008.04.081
https://doi.org/10.1016/j.aquatox.2007.03.002
https://doi.org/10.1016/j.aquatox.2007.03.002
https://doi.org/10.1016/j.scitotenv.2017.08.035
https://doi.org/10.1016/j.aquatox.2007.03.002
https://doi.org/10.1016/j.aquatox.2007.03.002
https://doi.org/10.1007/s00204-015-1457-1
https://doi.org/10.1007/s00204-015-1457-1
https://doi.org/10.1016/j.scitotenv.2021.145036
https://doi.org/10.1080/00040851.1970.12003561
https://doi.org/10.1021/acs.est.0c03308
https://doi.org/10.1021/acs.est.0c03308
https://doi.org/10.1016/j.chemosphere.2014.08.029
https://doi.org/10.1016/j.chemosphere.2014.08.029
https://doi.org/10.1021/acs.est.8b01613
https://doi.org/10.1021/acs.est.8b01613
https://doi.org/10.1016/j.envres.2020.110497
https://doi.org/10.1897/06-246R.1
https://doi.org/10.1897/06-246R.1
https://doi.org/10.1002/etc.535
https://doi.org/10.1002/etc.535
https://doi.org/10.1016/j.marpolbul.2010.04.002
https://doi.org/10.1016/j.marpolbul.2010.04.002
https://doi.org/10.1016/j.jhazmat.2010.03.063
https://doi.org/10.1007/s00244-017-0403-z
https://doi.org/10.1371/journal.pone.0131085
https://doi.org/10.1371/journal.pone.0131085
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-species-stock
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-species-stock
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-species-stock
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-species-stock
https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-stock-assessment-reports-species-stock
https://doi.org/10.1016/j.marenvres.2013.08.016
https://doi.org/10.1016/j.marenvres.2013.08.016
https://doi.org/10.1016/0048-9697(94)90089-2
https://doi.org/10.1021/es101039d
https://doi.org/10.1006/jmsc.1997.0280
https://doi.org/10.1006/jmsc.1997.0280
https://doi.org/10.1021/es500229y
https://doi.org/10.1111/bcpt.12595
https://doi.org/10.1016/j.ecolind.2022.109235
https://doi.org/10.1016/j.envres.2015.06.021


Environmental Pollution 335 (2023) 122255

12

with the blubber. J. Environ. Monit. 13, 649–656. https://doi.org/10.1039/ 
C0EM00310G. 

Rajput, I.R., Yaqoob, S., Yajing, S., Sanganyado, E., Wenhua, L., 2021. Polybrominated 
diphenyl ethers exert genotoxic effects in pantropic spotted dolphin fibroblast cell 
lines. Environ. Pollut. 271, 116131 https://doi.org/10.1016/j.envpol.2020.116131. 

Randhawa, N., Gulland, F., Ylitalo, G.M., DeLong, R., Mazet, J.A.K., 2015. Sentinel 
California sea lions provide insight into legacy organochlorine exposure trends and 
their association with cancer and infectious disease. One Health 1, 37–43. https:// 
doi.org/10.1016/j.onehlt.2015.08.003. 

Rjabova, J., Bartkevics, V., Zacs, D., 2016. The occurrence of Dechlorane Plus and related 
norbornene-based flame retardants in Baltic wild salmon (Salmo salar). 
Chemosphere 147, 210–217. https://doi.org/10.1016/j.chemosphere.2015.12.122. 

Roman, J., Altman, I., Dunphy-Daly, M.M., Campbell, C., Jasny, M., Read, A.J., 2013. 
The Marine Mammal Protection Act at 40: status, recovery, and future of U.S. marine 
mammals. Ann. N. Y. Acad. Sci. 1286, 29–49. https://doi.org/10.1111/nyas.12040. 

Roos, A.M., Bã¤cklin, B.-M.V.M., Helander, B.r.O., RigÃ©t, F.F., Eriksson, U.C., 2012. 
Improved reproductive success in otters (Lutra lutra), grey seals (Halichoerus grypus) 
and sea eagles (Haliaeetus albicilla) from Sweden in relation to concentrations of 
organochlorine contaminants. Environ. Pollut. 170, 268–275. https://doi.org/ 
10.1016/j.envpol.2012.07.017. 

Ross, P.S., 2006. Fireproof killer whales (Orcinus orca): flame retardant chemicals and the 
conservation imperative in the charismatic icon of British Columbia, Canada. Can. J. 
Fish. Aquat. Sci. 63, 224–234. https://doi.org/10.1139/f05-244. 

Ross, P.S., Couillard, C.M., Ikonomou, M.G., Johannessen, S.C., Lebeuf, M., 
Macdonald, R.W., Tomy, G.T., 2009. Large and growing environmental reservoirs of 
Deca-BDE present an emerging health risk for fish and marine mammals. Mar. Pollut. 
Bull. 58, 7–10. https://doi.org/10.1016/j.marpolbul.2008.09.002. 

Ross, P.S., De Swart, R.L., Addison, R., Van Loveren, H., Vos, J.G., Osterhaus, A.D.M.E., 
1996. Contaminant-induced immunotoxicity in harbour seals: wildlife at risk? 
Toxicology 112, 157–169. https://doi.org/10.1016/0300-483X(96)03396-3. 

Scharff-Olsen, C.H., Galatius, A., Teilmann, J., Dietz, R., Andersen, S.M., Jarnit, S., et al., 
2019. Diet of seals in the Baltic Sea region: a synthesis of published and new data 
from 1968 to 2013. ICES J. Mar. Sci. 76, 284–297. https://doi.org/10.1093/icesjms/ 
fsy159. 

Schipper, J., Chanson, J.S., Chiozza, F., Cox, N.A., Hoffmann, M., Katariya, V., et al., 
2008. The status of the world’s land and marine mammals: diversity, threat, and 
knowledge. Science 322, 225–230. https://doi.org/10.1126/science.1165115. 

Schwacke, L.H., Zolman, E.S., Balmer, B.C., De Guise, S., George, R.C., Hoguet, J., et al., 
2012. Anaemia, hypothyroidism and immune suppression associated with 
polychlorinated biphenyl exposure in bottlenose dolphins (Tursiops truncatus). Proc. 
R. Soc. Lond. B Biol. Sci. 279, 48–57. https://doi.org/10.1098/rspb.2011.0665. 

Sellström, U., Jansson, B., Kierkegaard, A., de Wit, C., 1993. Polybrominated diphenyl 
ethers (PBDE) in biological samples from the Swedish environment. Chemosphere 
29, 1703–1718. https://doi.org/10.1016/0045-6535(93)90114-K. 

Shaw, S.D., Berger, M.L., Brenner, D., Tao, L., Wu, Q., Kannan, K., 2009. Specific 
accumulation of perfluorochemicals in harbor seals (Phoca vitulina concolor) from the 
northwest Atlantic. Chemosphere 74, 1037–1043. https://doi.org/10.1016/j. 
chemosphere.2008.10.063. 

Shaw, S.D., Berger, M.L., Kannan, K., 2011. Status and trends of POPs in harbor seals 
from the Northwest Atlantic. In: Loganathan, B.G., Lam, P.K.S. (Eds.), Global 
Contamination Trends of Persistent Organic Chemicals, 1 ed. CRC Press Taylor & 
Francis Group, Boca Raton, Florida, pp. 515–547. 
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