Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Assessing citizen science opportunities in forest monitoring using probabilistic topic modelling
Naturhistoriska riksmuseet, Enheten för bioinformatik och genetik. University Göttingen, Germany. (Biodiversity Informatics)
Northwest German Forest Research Institute.
University Göttingen, Germany.
2014 (engelsk)Inngår i: Forest Ecosystems, ISSN 2197-5620, Vol. 1, nr 11, s. 1-12Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Background

With mounting global environmental, social and economic pressures the resilience and stability of forests and thus the provisioning of vital ecosystem services is increasingly threatened. Intensified monitoring can help to detect ecological threats and changes earlier, but monitoring resources are limited. Participatory forest monitoring with the help of “citizen scientists” can provide additional resources for forest monitoring and at the same time help to communicate with stakeholders and the general public. Examples for citizen science projects in the forestry domain can be found but a solid, applicable larger framework to utilise public participation in the area of forest monitoring seems to be lacking. We propose that a better understanding of shared and related topics in citizen science and forest monitoring might be a first step towards such a framework.

Methods

We conduct a systematic meta-analysis of 1015 publication abstracts addressing “forest monitoring” and “citizen science” in order to explore the combined topical landscape of these subjects. We employ ‘topic modelling’, an unsupervised probabilistic machine learning method, to identify latent shared topics in the analysed publications.

Results

We find that large shared topics exist, but that these are primarily topics that would be expected in scientific publications in general. Common domain-specific topics are under-represented and indicate a topical separation of the two document sets on “forest monitoring” and “citizen science” and thus the represented domains. While topic modelling as a method proves to be a scalable and useful analytical tool, we propose that our approach could deliver even more useful data if a larger document set and full-text publications would be available for analysis.

Conclusions

We propose that these results, together with the observation of non-shared but related topics, point at under-utilised opportunities for public participation in forest monitoring. Citizen science could be applied as a versatile tool in forest ecosystems monitoring, complementing traditional forest monitoring programmes, assisting early threat recognition and helping to connect forest management with the general public. We conclude that our presented approach should be pursued further as it may aid the understanding and setup of citizen science efforts in the forest monitoring domain.

sted, utgiver, år, opplag, sider
2014. Vol. 1, nr 11, s. 1-12
Emneord [en]
Forest monitoring; Citizen science; Participatory forest monitoring; Probabilistic topic modelling; Text analysis
HSV kategori
Forskningsprogram
Naturmiljö och människan
Identifikatorer
URN: urn:nbn:se:nrm:diva-566DOI: 10.1186/s40663-014-0011-6OAI: oai:DiVA.org:nrm-566DiVA, id: diva2:738070
Tilgjengelig fra: 2014-08-15 Laget: 2014-08-15 Sist oppdatert: 2014-12-28bibliografisk kontrollert

Open Access i DiVA

Daume_et_al_ForestEcosystems_2014.pdf(2340 kB)94 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 2340 kBChecksum SHA-512
5c78e9ba59a24f15fb5b0f9186ccd296592280a8ced2166834d0bcf81349c0777db4a7f0d3b7e44b7ec84df937250b06b09e5407a068bd5db53aec04a63cbba9
Type fulltextMimetype application/pdf

Andre lenker

Forlagets fullteksthttp://www.forestecosyst.com/content/1/1/11
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 94 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 347 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf