Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
CO2 fluid inclusions in Jack Hills zircons.
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
Show others and affiliations
2017 (English)In: Contributions to Mineralogy and Petrology, ISSN 0010-7999, E-ISSN 1432-0967, Vol. 172, article id 66Article in journal (Refereed) Published
Abstract [en]

The discovery of Hadean to Paleoarchean zircons in a metaconglomerate from Jack Hills, Western Australia, has catalyzed intensive study of these zircons and their mineral inclusions, as they represent unique geochemical archives that can be used to unravel the geological evolution of early Earth. Here, we report the occurrence and physical properties of previously undetected CO2 inclusions that were identified in 3.36–3.47 Ga and 3.80–4.13 Ga zircon grains by confocal micro-Raman spectroscopy. Minimum P–T conditions of zircon formation were determined from the highest density of the inclusions, determined from the density-dependence of the Fermi diad splitting in the Raman spectrum and Ti-in-zircon thermometry. For both age periods, the CO2 densities and Ti-in-zircon temperatures correspond to high-grade metamorphic conditions (≥5 to ≥7 kbar/~670 to 770 °C) that are typical of mid-crustal regional metamorphism throughout Earth’s history. In addition, fully enclosed, highly disordered graphitic carbon inclusions were identified in two zircon grains from the older population that also contained CO2 inclusions. Transmission electron microscopy on one of these inclusions revealed that carbon forms a thin amorphous film on the inclusion wall, whereas the rest of the volume was probably occupied by CO2 prior to analysis. This indicates a close relationship between CO2 and the reduced carbon inclusions and, in particular that the carbon precipitated from a CO2-rich fluid, which is inconsistent with the recently proposed biogenic origin of carbon inclusions found in Hadean zircons from Jack Hills.

Place, publisher, year, edition, pages
2017. Vol. 172, article id 66
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-2666DOI: 10.1007/s00410-017-1382-9OAI: oai:DiVA.org:nrm-2666DiVA, id: diva2:1166860
Available from: 2017-12-16 Created: 2017-12-16 Last updated: 2017-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://link.springer.com/content/pdf/10.1007%2Fs00410-017-1382-9.pdf

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Contributions to Mineralogy and Petrology
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf