The first day of the CenozoicShow others and affiliations
2019 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 116, p. 19342-19351Article in journal (Refereed) Published
Abstract [en]
Highly expanded Cretaceous–Paleogene (K-Pg) boundary section from the Chicxulub peak ring, recovered by International Ocean Discovery Program (IODP) –International Continental Scientific Drilling Program (ICDP) Expedition 364, provides an unprecedented window into the immediate aftermath of the impact. Site M0077 includes ∼130 m of impact melt rock and suevite deposited the first day of the Cenozoic covered by <1 m of micrite-rich carbonate deposite over subsequent weeks to years. We present an interpreted series of events based on analyses of these drill cores. Within minutes of the impact, centrally uplifted basement rock collapsed outward to forma peak ring capped in melt rock. Within tens of minutes, the peak ring was covered in ∼40 m of brecciated impact melt rock and coarsegrained suevite, including clasts possibly generated by melt–water interactions during ocean resurge. Within an hour, resurge crested the peak ring, depositing a 10-m-thick layer of suevite with increased particle roundness and sorting. Within hours, the full resurge deposit formed through settling and seiches, resulting in an 80-m-thick fining-upward, sorted suevite in the flooded crater. Within a day, the reflected rim-wave tsunami reached the crater, depositing a cross-bedded sand-to-fine gravel layer enriched in polycyclic aromatic hydrocarbons overlain by charcoal fragments. Generation of a deep crater open to the ocean allowed rapid flooding and sediment accumulation rates among the highest known in the geologic record. The high-resolution section provides insight into the impact environmental effects, including charcoal as evidence for impactinduced wildfires and a paucity of sulfur-rich evaporites from the target supporting rapid global cooling and darkness as extinction mechanisms.
Place, publisher, year, edition, pages
US National Academy of Sciences , 2019. Vol. 116, p. 19342-19351
Keywords [en]
Chicxulub impact crater, suevite, Cretaceous–Paleogene, peak ring, tsunami
National Category
Other Earth and Related Environmental Sciences
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-3415DOI: 10.1073/pnas.1909479116OAI: oai:DiVA.org:nrm-3415DiVA, id: diva2:1372930
Funder
Swedish Research Council, 2015-4264
Note
Additional funding from:
The European Consortium for Ocean Research Drilling (ECORD) implemented Expedition 364 with funding from the IODP and the ICDP. US participants were supported by the US Science Support Program and National Science Foundation Grants OCE 1737351, OCE 1736826, OCE 1737087, OCE 1737037, OCE 1736951, and OCE 1737199. J.O. was partially supported by Grants ESP2015-65712-C5-1-R and ESP2017-87676-C5-1-R from the Spanish Ministry of Economy and Competitiveness and Fondo Europeo de Desarrollo Regional. B.S. thanks Curtin University for an Australian Postgraduate Award. J.V.M. was funded by Natural Environment Research Council Grant NE/P005217/1. K. Grice thanks Australia Research Council for Grant DP180100982 and Australia New Zealand IODP Consortium for funding. The Vrije Universiteit Brussel group is supported by Research Foundation Flanders (FWO) and BELSPO; P.K. is an FWO PhD fellow.
2019-10-012019-11-25Bibliographically approved