Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Textural, geochemical, and isotopic data from silicified rocks and associated chemical sedimentary rocks in the ~ 2.7 Ga Abitibi greenstone belt, Canada: Insight into the role of silicification
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
Show others and affiliations
2020 (English)In: Precambrian Research, ISSN 0301-9268, E-ISSN 1872-7433, Vol. 351Article in journal (Refereed) Published
Abstract [en]

Silica-rich Precambrian rocks often preserve geochemical information and microfossil remnants from the early biosphere and could play a critical role in the formation of early crust. Because these rocks are important geochemical and paleontological archives, we need to better constrain their geochemical and isotopic attributes and generate a refined picture of the evolving Archean silica cycle. Here, we investigate a series of sub- to greenschist facies Si-rich Archean rocks from the ~ 2.7 Ga Abitibi greenstone belt, Canada, that represent chemical sedimentary rocks and rocks formed via silica-addition through the process of silicification. We report data for major and trace element geochemistry, multi-crystal silicon and oxygen isotopes of quartz using isotope ratio mass spectrometry, and texture-specific silicon isotope values measured using secondary ion mass spectrometry on Neoarchean chemical sedimentary rocks, their silicified equivalents, and associated silicified volcanic rocks. We find that in such a well-preserved terrane we can utilize petrographic textures and geochemical attributes to establish rock origin, distinguishing siliceous rocks that form via chemical sedimentation from those that form via silicification. Chemical sedimentary rocks display a wide range of 30Si-depleted silicon isotopes values that vary with stratigraphy similar to other Archean iron formation. Silicified volcanic rocks possess 30Si-enriched values, similar to Archean silicified basalts. We conclude that because silicon isotope values of iron formation shift toward 30Si-enriched values up stratigraphy, basinal changes in the composition of the silicon isotope reservoir may be preserved. Silicon isotope values of silicified volcanic rocks by contrast, likely represent precipitation from an isotopically heavy silicon reservoir, influenced by downward percolating seawater and upward moving convecting fluids interacting with host volcanic rock (basalt or andesite). Overall, we confirm that Neoarchean silicified rocks are 30Si-enriched like their Paleoarchean counterparts.

Place, publisher, year, edition, pages
2020. Vol. 351
Keywords [en]
Silica cycle, Silicification, Iron formation, Geochemistry, Silicon isotopes, Oxygen isotopes
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-3909DOI: 10.1016/j.precamres.2020.105946OAI: oai:DiVA.org:nrm-3909DiVA, id: diva2:1507028
Available from: 2020-12-06 Created: 2020-12-06 Last updated: 2020-12-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0301926820305350

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Precambrian Research
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 101 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf