Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
U-Pb geochronology of the syn-orogenic Knaben molybdenum deposits, Sveconorwegian orogen, Norway
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
2015 (English)In: Geological Magazine, ISSN 0016-7568, E-ISSN 1469-5081, Vol. 152, p. 537-556Article in journal (Refereed) Published
Abstract [en]

Paired isotope dilution – thermal ionization mass spectrometry (ID-TIMS) and secondary ion mass spectrometry (SIMS) zircon U–Pb data elucidate geochronological relations in the historically important Knaben molybdenum mining district, Sveconorwegian Orogen, south Norway. This polyphase district provided c. 8.5 Mt of ore with a grade of 0.2%. It consists of mineralized quartz veins, silica-rich gneiss, pegmatites and aplites associated with a heterogeneous, locally sulphide-bearing, amphibolites facies gneiss called Knaben Gneiss, and hosted in a regional-scale monotonous, commonly weakly foliated, granitic gneiss. An augen gneiss at the Knaben I deposit yields a 1257±6 Ma magmatic zircon age, dating the pre-Sveconorwegian protolith of the Knaben Gneiss. Mineralized and non-mineralized granitic gneiss samples at the Knaben II and Kvina deposits contain some 1488–1164 Ma inherited zircon and yield consistent intrusion ages of 1032±4, 1034±6 and 1036±6 Ma. This age links magmatism in the district to the regional 1050–1020 Ma Sirdal I-type granite suite, corresponding to voluminous crustal melting during the Sveconorwegian orogeny. A high-U, low-Th/U zircon rim is present in all samples. It defines several age clusters between 1039±6 and 1009±7 Ma, peaking at c. 1016 Ma and overlapping with a monazite age of 1013±5 Ma. The rim records protracted hydrothermal activity, which started during the main magmatic event and outlasted it. This process was coeval with regional high-grade Sveconorwegian metamorphism. Molybdenum deposition probably started during this event when silica-rich mineralizing fluids or hydrous magmas were released from granite magma batches. An analogy between the Knaben district and shallow, short-lived porphyry Mo deposits is inappropriate.

Place, publisher, year, edition, pages
2015. Vol. 152, p. 537-556
National Category
Geology
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-1511DOI: 10.1017/S001675681400048XOAI: oai:DiVA.org:nrm-1511DiVA, id: diva2:877162
Available from: 2015-12-05 Created: 2015-12-05 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Geological Magazine
Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 255 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf