Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cu isotopes in marine black shales record the Great Oxidation Event
Stockholm University, Department of Geological Sciences.
Stockholm University Department of Geological Sciences.
University of Saskatchewan, Canada.
Université de Bretagne Occidentale, France.
Show others and affiliations
2016 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, no 18, p. 4941-4946Article in journal (Refereed) Published
Abstract [en]

The oxygenation of the atmosphere ∼2.45–2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth’s redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ65CuERM-AE633) in organic carbon-rich shales spanning the period 2.66–2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in 65Cu, along with the preferential removal of 65Cu by iron oxides, left seawater and marine biomass depleted in 65Cu but enriched in 63Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ65Cu values coincides with a shift to negative sedimentary δ56Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ65Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past.

Place, publisher, year, edition, pages
2016. Vol. 113, no 18, p. 4941-4946
Keywords [en]
Cu isotopes, Great Oxidation Event, black shales
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-1806DOI: www.pnas.org/cgi/doi/10.1073/pnas.1523544113OAI: oai:DiVA.org:nrm-1806DiVA, id: diva2:954458
Available from: 2016-08-22 Created: 2016-08-22 Last updated: 2017-11-28Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Andersson, Per
By organisation
Department of Geology
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 148 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf