Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Prolonged magmatism on 4 Vesta inferred from Hf–W analyses of eucrite zircon
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
Show others and affiliations
2016 (English)In: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 452, 216-226 p.Article in journal (Refereed) Published
Abstract [en]

The asteroid 4 Vesta is the second most massive planetesimal in the Solar System and a rare example of a planetary object that possibly can be linked to a specific group of differentiated meteorites, the howardite–eucrite–diogenite suite. The 182Hf–182W chronometry of individual zircon grains from six basaltic eucrites revealed distinct growth episodes ranging from 4532 −11/+6 Ma−11/+6 Ma to 4565.0±0.9 Ma4565.0±0.9 Ma and constrains the early thermal history of 4 Vesta, indicating that its mantle generated basaltic melts for at least 35 million years (Myr). Initially, the energy needed for melting was provided by decay of short-lived isotopes, mostly 26Al. The long duration of magmatism despite the short lifetime of 26Al implies that the asteroid must have accreted within the first ∼4 Myr of Solar System formation, similar to the formation of iron meteorite parent bodies, and that its interior must have been thermally well insulated by an early-formed crust that prevented heat loss.

Place, publisher, year, edition, pages
2016. Vol. 452, 216-226 p.
National Category
Geochemistry
Identifiers
URN: urn:nbn:se:nrm:diva-1955DOI: 10.1016/j.epsl.2016.07.025OAI: oai:DiVA.org:nrm-1955DiVA: diva2:1050969
Available from: 2016-11-30 Created: 2016-11-30 Last updated: 2016-12-01Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0012821X16303818

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Earth and Planetary Science Letters
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 8 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf