Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8-3.0 Ga detrital zircons
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
Show others and affiliations
2017 (English)In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 215, p. 432-446Article in journal (Refereed) Published
Abstract [en]

Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9–2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon δ18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In εHf-time space, 3.8–3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ∼0.015) that separated from chondritic mantle at ∼3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral accretion of arc-related crustal blocks until 3.35 Ga.

Place, publisher, year, edition, pages
2017. Vol. 215, p. 432-446
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-2535DOI: 10.1016/j.gca.2017.07.008OAI: oai:DiVA.org:nrm-2535DiVA, id: diva2:1162119
Available from: 2017-12-03 Created: 2017-12-03 Last updated: 2017-12-04Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0016703717304167

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Geochimica et Cosmochimica Acta
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 214 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf