Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton.
Show others and affiliations
2017 (English)In: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 449, 135-146 p.Article in journal (Refereed) Published
Abstract [en]

Multiple sulfur isotope variability in Archean sedimentary rocks provides constraints on the composition of the Earth’s earliest atmosphere. The magnitude and sign of mass-independent anomalies reflect not only atmospheric processes, but also transformations due to the Archean marine sulfur cycle prior to preservation into sedimentary pyrite. The processes affecting the Archean marine sulfur cycle and the role of microbial or abiotic redox reactions during pyrite formation remain unclear. Here we combine iron (Fe) and multiple sulfur (S) isotope data in individual pyrite grains with petrographic information and a one-dimensional reactive transport model, to investigate the sources of Fe and S in pyrite formed in a Paleoarchean sedimentary basin. Pyrites were selected from mudstones, sandstones and chert obtained from a drill core in the ca. 3.2 Ga Mapepe and Mendon Formations of the Fig Tree and Onverwacht Groups, respectively, in the Barberton Greenstone Belt, Kaapvaal Craton, South Africa. Pyrite textures and δ56Fe distinguish early-diagenetic pyrite formed with pore-water ferrous iron (disseminated grains with average δ56Fepyrite = 0‰) from late-diagenetic pyrite formed through sulfidation of iron oxide minerals (layered and aggregate forms with average δ56Fepyrite = + 1‰). Mass dependent S isotope variability in pyrite was small (δ34Spyrite ranged from − 1.1 to + 3.3‰) with a correspondingly minor spread in Δ33Spyrite (ranging from + 0.3 to + 2.1‰) and Δ36Spyrite (ranging from − 3.08 to + 0.27‰) that indicates a lack of post-depositional re-working with other distinct sulfur sources. Our combined Fe and S isotope data are most readily explained with pyrite sulfide derived from microbial-reworking of solid elemental S. Iron oxide minerals were necessary to buffer sulfide concentrations and provide favorable conditions for microbial sulfur disproportionation to proceed. The lack of a negative Δ33S signal indicates that pyrite from relatively deep marine diagenetic environments only partially records the products of atmospheric photolysis, consistent with low sulfate concentrations in the Paleoarchean ocean.

Place, publisher, year, edition, pages
2017. Vol. 449, 135-146 p.
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-2661DOI: 10.1016/j.chemgeo.2016.12.006OAI: oai:DiVA.org:nrm-2661DiVA: diva2:1166846
Available from: 2017-12-16 Created: 2017-12-16 Last updated: 2017-12-18Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full texthttp://www.sciencedirect.com/science/article/pii/S0009254116306520

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Chemical Geology
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 1 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf