Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fluor-elbaite, lepidolite and Ta–Nb oxides from a pegmatite of the 3000Ma Sinceni Pluton, Swaziland: evidence for lithium–cesium–tantalum (LCT) pegmatites in the Mesoarchean
University of Maine, Orono, USA.
Sapienza Università di Roma, Italy.
Lund University, Sweden.
Lund University, Sweden.
Show others and affiliations
2018 (English)In: European journal of mineralogy, ISSN 0935-1221, E-ISSN 1617-4011, Vol. 30, no 2, p. 205-218Article in journal (Refereed) Published
Abstract [en]

Mineral evolution is concerned with the timing of mineral occurrences, such as the earliest reported occurrences in the geologic record. Minerals containing essential Li have not been reported from rocks older than ca. 3000 Ma, thus the lithian tourmaline (fluor-elbaite) and mica (lepidolite) assemblage from a pegmatite near Zishineni associated with the ca. 3000Ma Sinceni Pluton presents unusual interest. Fluor-elbaite (0.750.98 F per formula unit) forms green crystals up to 50mm long. Spindle stage measurements give ω = 1.652(1), ε = 1.627(1) (589.3 nm). Optical absorption spectroscopy shows Fe and Mn are divalent; infra-red spectroscopy demonstrates the presence of Li and indicates the presence of (OH) at both the (OH) sites. Electron microprobe analysis of 330 points on several prisms, the largest of which is zoned in Fe and Ca, gives the following average and standard deviations in wt%: SiO2 37.29 (0.26), TiO2 0.05 (0.05), Al2O3 38.14 (0.35), Cr2O3 0 (0.02), MgO 0.02 (0.01), MnO 3.57 (0.25), FeO 2.48 (0.60), Na2O 2.48 (0.09), K2O 0.03 (0.12), CaO 0.77 (0.21), F 1.80 (0.11), Cl 0 (0.01) wt%. Nuclear reaction analyses gave Li2O 0.91 (0.04) and B2O10.55 (0.45). The empirical formula of fluor-elbaite was determined by integrating crystal-chemical data from electron microprobe analysis, nuclear reaction analysis, crystal structure refinement using X-ray diffraction, infra-red and optical absorption spectroscopy:X(0.09Na0.77K0.01Ca0.13)Σ1.00 Y(0.35Li0.59Mn2+0.49Fe2+0.33Al1.23Ti0.01)Σ3.00Al6(Si6O18)(BO3)3O3(OH)3O1[F0.92(OH)0.08]Σ1.00. The crystal structure of fluor-elbaite was refined to statistical indices R1 for 1454 reflections 2% using MoKa X-ray intensity data. Structural data confirm the presence of significant vacancies at the Y site. Micas include lepidolite in flakes several millimeters across that are veined and overgrown by fine-grainedmuscovite. Silica and (FeO+MnO) increase, and Al decreases with F, all giving tight linear fits for both micas taken together, suggesting bothmicas can be regarded as interstratified muscovite and lithium mica consisting of 35.2 wt% masutomilite containing nearly equal amounts of Mn and Fe, 52.8 wt% polylithionite and 11.9 wt% trilithionite. Muscovite and lepidolite contain <0.2 wt% and 0.72.25 wt% Cs2O and 1.01.1 wt% and 1.41.5wt% Rb2O, respectively. Other minerals include spessartine (e.g., Sps93Alm4Grs3) in scattered grains up to 0.5mm across and monazite.Oxides occur sparsely in muscovite, rarely in lepidolite, as grains up to 11 mm long, including fluorcalciomicrolite, columbite-(Mn) withNb>Ta, hübnerite(?) and a possible Pb-bearing microlite (Ta>Nb). The oxides, together with the muscovite, are interpreted to be related to later hydrothermal reworking of the primary lepidolitefluorelbaite assemblage. Given the 2990 ± 43MaRbSr isochron and 3074 ± 4Ma evaporation PbPb ages reported for the Sinceni Pluton and Rb/Sr mineral ages ranging from 2906 ± 31Ma to 3072 ± 33Ma reported for the pegmatites, the fluor-elbaitecesian lepidolitefluorcalciomicrolite-bearing pegmatite is the first reported occurrence of a lithian tourmaline and lepidolite in the geologic record, as well as one of the two earliest known examples of the lithiumcesiumtantalum (LCT) family of pegmatites. The Sinceni magma is most plausibly derived from a metasedimentary source by intrusion of hot mantle melts into the crust from below, thereby indicating that a “mature” continental crust existed in the Kaapvaal craton at ca. 3000 Ma.

Place, publisher, year, edition, pages
2018. Vol. 30, no 2, p. 205-218
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-2854DOI: 10.1127/ejm/2017/0029-2686OAI: oai:DiVA.org:nrm-2854DiVA, id: diva2:1252831
Available from: 2018-10-03 Created: 2018-10-03 Last updated: 2018-10-03Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Hålenius, Ulf
By organisation
Department of Geology
In the same journal
European journal of mineralogy
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 39 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf