The subgenera of Wiedemannia are poorly defined and, as such, most recently described species are not assigned to a subgenus or have been assigned to a subgenus without explanation. In this study we perform a molecular phylogenetic analysis to elucidate relationships within the genus Wiedemannia. We sequenced two mitochondrial (cytochrome oxidase c subunit I and cytochrome β) and two nuclear (carbomoylphosphate synthase domain of rudimentary and elongation factor‐1α) gene fragments to reconstruct phylogenetic relationships among the subgenera Chamaedipsia, Eucelidia, Philolutra, Pseudowiedemannia, Roederella and Wiedemannia (s.s.) using both Bayesian inference and maximum likelihood approaches. The genus was found to be monophyletic, but most of the subgenera were not. We propose eliminating the present subgeneric division altogether. Molecular dating using a log‐normal clock model and calibration with fossil species indicated that Wiedemannia diversified about 48 Ma, while there was still land connectivity between Europe and Asia with North America. Wiedemannia has a near‐worldwide distribution apart from the Australasian and Neotropical regions and Antarctica, with greatest species richness in the western Palaearctic, especially the Mediterranean region. Molecular phylogenetics support more recent morphological studies. The subgenera of Wiedemannia are invalid and rejected. Biogeographical data suggest potential hotspots, and the current distribution is discussed.