Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment - An update
Show others and affiliations
2019 (English)In: Emerging Contaminants, ISSN 2405-6650, E-ISSN 2405-6642, Vol. 5, p. 240-271Article in journal (Refereed) Published
Abstract [en]

Poly- and perfluoroalkyl substances (PFASs) are important environmental contaminants globally and in the early 2000s they were shown to be ubiquitous contaminants in Arctic wildlife. Previous reviews by Butt et al. and Letcher et al. have covered studies on levels and trends of PFASs in the Arctic that were available to 2009. The purpose of this review is to focus on more recent work, generally published between 2009 and 2018, with emphasis on PFASs of emerging concern such as perfluoroalkyl carboxylates (PFCAs) and short-chain perfluoroalkyl sulfonates (PFSAs) and their precursors. Atmospheric measurements over the period 2006e2014 have shown that fluorotelomer alcohols (FTOHs) as well as perfluorobutanoic acid (PFBA) and perfluoroctanoic acid (PFOA) are the most prominent PFASs in the arctic atmosphere, all with increasing concentrations at Alert although PFOA concentrations declined at the Zeppelin Station (Svalbard). Results from ice cores show generally increasing deposition of PFCAs on the Devon Ice cap in the Canadian arctic while declining fluxes were found in a glacier on Svalbard. An extensive dataset exists for long-term trends of long-chain PFCAs that have been reported in Arctic biota with some datasets including archived samples from the 1970s and 1980s. Trends in PFCAs over time vary among the same species across the North American Arctic, East and West Greenland, and Svalbard. Most long term time series show a decline from higher concentrations in the early 2000s. However there have been recent (post 2010) increasing trends of PFCAs in ringed seals in the Canadian Arctic, East Greenland polar bears and in arctic foxes in Svalbard. Annual biological sampling is helping to determine these relatively short term changes. Rising levels of some PFCAs have been explained by continued emissions of long-chain PFCAs and/or their precursors and inflows to the Arctic Ocean, especially from the North Atlantic. While the effectiveness of biological sampling for temporal trends in long-chain PFCAs and PFSAs has been demonstrated, this does not apply to the C4eC8ePFCAs, perfluorobutanesulfonamide (FBSA), or perfluorobutane sulfonate (PFBS) which are generally present at low concentrations in biota. In addition to air sampling, sampling abiotic media such as glacial cores, and annual

Place, publisher, year, edition, pages
2019. Vol. 5, p. 240-271
Keywords [en]
Perfluoroalkyl substances, PFASs, Perfluoroalkyl carboxylates, Perfluoroalkyl sulfonates, Perfluorobutanoic acid, Perfluorooctanoic acid, Air, Seawater, Ice caps, Biota, Contaminants, Long-range transport, Review
National Category
Natural Sciences
Research subject
Man and the environment
Identifiers
URN: urn:nbn:se:nrm:diva-3311OAI: oai:DiVA.org:nrm-3311DiVA, id: diva2:1340514
Available from: 2019-08-05 Created: 2019-08-05 Last updated: 2019-08-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Roos, Anna
By organisation
Department of Environmental research and monitoring
In the same journal
Emerging Contaminants
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf