Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Post-spreading deformation and associated magmatism along the Iberia-Morocco Atlantic margins: Insight from submarine volcanoes of the Tore-Madeira Rise
Swedish Museum of Natural History, Department of Geology. (NordSIMS)ORCID iD: 0000-0001-9018-6862
Show others and affiliations
2019 (English)In: Marine Geology, ISSN 0025-3227, E-ISSN 1872-6151, Vol. 407, p. 76-93Article in journal (Refereed) Published
Abstract [en]

A new high-resolution bathymetric map combined with a regional Digital Elevation Model (DEM) analysis reveal the modalities of occurrence and emplacement of post-spreading magmatism along the NNE-SSW oriented, 1000 km long Tore-Madeira Rise (TMR) as well as its relationship with the activity of major fault systems including the Estremadura Fault System (ESF) and the Azores-Gibraltar Fracture Zone (AGFZ). Morphological and structural analysis of the bathymetric map were performed to map volcanic features such as eruptive cones, vents and fissures together with faults along the TMR. The new bathymetric map shows that the main NNW-SSE seamount alignment is formed by three structurally distinct volcanic massifs, the Tore, the Josephine and the Southern Volcanic Groups. The majority of the volcanoes of each group emplaced within or along specific portion of pre-existing faults (ESF and AGFZ) including splay fault, releasing bend, fault tips and interaction zones between different segments. Magmas were channelled into sub-vertical pre-existing lithospheric faults that acted as preferential pathways for the vertical magma ascent. Migration and final eruption of magma are controlled by the local stress variation induced by complex fault geometries, change in plate kinematics as well as strong shear zone anisotropy as suggested by the emplacement within localised areas of transtension. We conclude that post-spreading magma emplacement in the southern part of the Iberia margin was related to the development of a transtensional plate boundary between the Iberian and African Plate during the Late Cretaceous. More generally, our findings emphasize that the distribution of volcanism as the expression of the interaction between shallow plate tectonic and mantle processes should be included in plate kinematic reconstruction. This study also demonstrates that the accurate mapping of oceanic seafloor is pivotal to better understand tectono-magmatic evolution of volcanic seamount chains and geological processes in oceanic domains.

Place, publisher, year, edition, pages
2019. Vol. 407, p. 76-93
Keywords [en]
Volcanism, Oceanic transform, Transfer faults, Transtension, Tore-Madeira Rise, Iberia-Morocco margin
National Category
Natural Sciences
Identifiers
URN: urn:nbn:se:nrm:diva-3532OAI: oai:DiVA.org:nrm-3532DiVA, id: diva2:1375195
Available from: 2019-12-04 Created: 2019-12-04 Last updated: 2023-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.sciencedirect.com/science/article/pii/S002532271830224X

Search in DiVA

By author/editor
Merle, Renaud
By organisation
Department of Geology
In the same journal
Marine Geology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 29 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf