Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Mt Bambouto Volcano, Cameroon Line: Mantle Source and Differentiation of Within-plate Alkaline Rocks
Swedish Museum of Natural History. (NordSIMS)ORCID iD: 0000-0001-9018-6862
Show others and affiliations
2017 (English)In: Journal of Petrology, ISSN 0022-3530, E-ISSN 1460-2415, Vol. 58, no 5, p. 933-962Article in journal (Refereed) Published
Abstract [en]

The Late Cretaceous–Quaternary Cameroon Volcanic Line (CVL) is a 1600 km long chain of volcanoes that straddles the continent–ocean boundary and extends from the Gulf of Guinea to the interior of the African continent. The magmatic activity started at 70 Ma and has continued until the present. The products of this magmatic activity are distinctive in terms of petrology and isotope geochemistry, the variety of volcanic rocks ranging from ultrabasic, alkaline to sub-alkaline lavas to highly evolved alkaline lavas with isotopic compositions indicating complex combinations of both sub-lithospheric (HIMU, EM, DMM) and lithospheric components (sub-continental lithospheric mantle and crust). We conducted a petrological and geochemical study of a set of volcanic rocks, sampled from the rim and interior of the Miocene Mt Bambouto caldera, one of the 12 main volcanic centres of the CVL. The rocks were analysed for their whole-rock major and trace element contents, 40Ar/39Ar ages and whole-rock Sr–Nd–Pb–Os isotopic compositions. Phonolites and quartz-trachytes of the Mt Bambouto caldera are derived by fractional crystallization of highly alkaline and moderately alkaline parental basic magmas, respectively. Assimilation of the shallow crust has affected both alkaline and subalkaline magmas, suggesting that the petrogenesis of the differentiated rocks cannot be explained by crustal contamination alone. Only minor amounts (usually less than 5%) of assimilation of upper crustal silicic rocks from the local Pan-African basement are required to produce the most differentiated compositions. The rocks with the highest crustal contribution are Q-normative trachytes from peripheral cones, as well as one Ne-trachyte. Mt Bambouto basic–ultrabasic rocks, including basanites and alkali-basalts with high 187Os/188Osi, might have experienced some crustal contamination, but it must have been a limited process. Some Mt Bambouto ultrabasic to basic rocks show large ion lithophile element enrichment, notably of Sr, Ba and P compared with Zr. These samples also have relatively radiogenic Sr and unradiogenic Pb isotopic compositions. Such compositions are similar to those of the high-Sr group identified by previous studies. Most of the basic rocks do not show such characteristics and are identified as a low-Sr group. We interpret the geochemical characteristics of the high-Sr group as resulting from the partial melting of a depleted mantle (DMM-like) peridotite source containing pyroxenite veins that had interacted with carbonatitic fluids. To test this hypothesis, we used a new modelling approach based on Monte Carlo simulation; this method has the advantage of deciphering how different mantle components interacted through time. Our modelling confirms the plausibility of a three-component source. In addition, it suggests that the carbonatitic fluid first mixed with the pyroxenititic component and the resulting melt interacted with a DMM-like mantle. Both high-Sr and low-Sr groups can be produced by such a mixing scenario but with a stronger contribution of the carbonatitic fluid for the high-Sr group. At the time of melting, these source components could have been located in a metasomatized region of the sublithospheric mantle (uppermost section of the asthenosphere) or in the sub-continental lithospheric mantle.

Place, publisher, year, edition, pages
2017. Vol. 58, no 5, p. 933-962
National Category
Natural Sciences
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-3538DOI: 10.1093/petrology/egx041OAI: oai:DiVA.org:nrm-3538DiVA, id: diva2:1375211
Conference
12/4/2019
Available from: 2019-12-04 Created: 2019-12-04 Last updated: 2019-12-04

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1093/petrology/egx041

Search in DiVA

By author/editor
merle, renaud
By organisation
Swedish Museum of Natural History
In the same journal
Journal of Petrology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 2 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf