Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sr, Nd, Pb and Os Isotope Systematics of CAMP Tholeiites from Eastern North America (ENA): Evidence of a Subduction-enriched Mantle Source
Swedish Museum of Natural History. (NordSIMS)ORCID iD: 0000-0001-9018-6862
Show others and affiliations
2013 (English)In: Journal of Petrology, ISSN 0022-3530, E-ISSN 1460-2415, Vol. 55, no 1, p. 133-180Article in journal (Refereed) Published
Abstract [en]

The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, with an areal extent exceeding 107 km2. Here we document the geochemical characteristics of CAMP basalts from Triassic–Jurassic basins in northeastern USA and Nova Scotia (Canada). The CAMP rocks occur as lava flows, sills and dykes. All of our analysed samples show chemical characteristics typical of CAMP basalts with low titanium content, which include enrichment in the most incompatible elements and negative Nb anomalies. All the basalts also show enriched Sr–Nd–Pb initial (t = 201 Ma) isotopic compositions (206Pb/204Pbini. = 18·155–18·691, 207Pb/204Pbini. = 15·616–15·668, 208Pb/204Pbini. = 38·160–38·616, 143Nd/144Ndini. = 0·512169–0·512499). On the basis of stratigraphy, rare earth element (REE) chemistry and Sr–Nd–Pb isotope composition, three chemical groups are defined. The Hook Mountain group, with the lowest La/Yb ratios, initial 206Pb/204Pbini. >18·5 and 143Nd/144Ndini. > 0·51238, comprises all the lastest and upper stratigraphic units. The Preakness group, with intermediate La/Yb ratios, 206Pb/204Pbini. > 18·5 and 0·51233 > 143Nd/144Ndini. > 0·51225, comprises the intermediate units. The Orange Mountain group has the highest La/Yb ratios and 143Nd/144Ndini. < 0·51235 and involves all the earliest and stratigraphically lowest units, including the entire North Mountain basalts from Nova Scotia. In this last group, three sub-groups may be distinguished: the Rapidan sill, which has 206Pb/204Pbini. higher than 18·5, the Shelburne sub-group, which has 143Nd/144Ndini. < 0·51225, and the remaining Orange Mt samples. With the exception of one sample, the Eastern North America (ENA) CAMP basalts display initial 187Os/188Os ratios in the range of mantle-derived magmas (<0·15). Simple modelling shows that the composition of the ENA CAMP basalts cannot plausibly be explained solely by crustal contamination of oceanic island basalt (OIB), mid-ocean ridge basalt (MORB) or oceanic plateau basalt (OPB) magmas. Mixing of such magma compositions with sub-continental lithospheric mantle (SCLM)-derived melts followed by crustal contamination, by either assimilation–fractional crystallization (AFC) or assimilation through turbulent ascent (ATA) processes is somewhat more successful. However, this latter scenario does not reproduce the REE and isotopic composition of the ENA CAMP in a fully satisfactory manner. Alternatively, we propose a model in which asthenospheric mantle overlying a subducted slab (i.e. mantle wedge) was enriched during Cambrian to Devonian subduction by sedimentary material, isotopically equivalent to Proterozoic–Lower Paleozoic crustal rocks. Subsequently, after subduction ceased, the isotopic composition of this mantle evolved by radioactive decay for another 170 Myr until the CAMP magmatic event. Varying amounts and compositions of the incorporated sedimentary component coupled with radiogenic ingrowth over time can account for the main geochemical characteristics of the ENA CAMP (enriched incompatible element patterns, negative Nb anomalies, enriched Sr–Nd–Pb isotopic composition) and the differences between the three chemical groups.

Place, publisher, year, edition, pages
2013. Vol. 55, no 1, p. 133-180
National Category
Natural Sciences
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-3551DOI: 10.1093/petrology/egt063OAI: oai:DiVA.org:nrm-3551DiVA, id: diva2:1375225
Conference
12/4/2019
Available from: 2019-12-04 Created: 2019-12-04 Last updated: 2019-12-04

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1093/petrology/egt063

Search in DiVA

By author/editor
merle, Renaud E.
By organisation
Swedish Museum of Natural History
In the same journal
Journal of Petrology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf