Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Low-δ18O zircon xenocrysts in alkaline basalts; a window into the complex carbonatite-metasomatic history of the Zealandia lithospheric mantle
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
Show others and affiliations
2019 (English)In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 254, p. 21-39Article in journal (Refereed) Published
Abstract [en]

Megacrystic zircon grains from alkaline basaltic fields are rare but can provide fundamental insights into mantle metasomatic processes. Here, we report in-situ U-Pb ages, trace element concentrations and hafnium and oxygen isotopes for fourteen zircon megacrysts from two intraplate alkaline basalt locations in New Zealand. U-Pb ages indicate the zircons crystallised between 12.1 and 19.8 Ma. Zircon oxygen isotopic compositions range from low to mantle-like compositions (grain average δ18O = 3.8–5.1‰). Hafnium isotopes (εHf(t) = +3.3 to +10.4) mostly overlap with intraplate mafic rocks and clinopyroxene in metasomatized peridotitic mantle xenoliths but show no correlation with most trace element parameters or oxygen isotopes. The zircons are interpreted to have formed by the reaction between low-degree melts derived from pre-existing mantle metasomes and the depleted mantle lithosphere prior to eruption and transport to the surface. The low Hf concentration, an absence of Eu anomalies, and elevated U/Yb compared to Nb/Yb in the megacrystic zircons are interpreted to show that the source metasomes comprised subduction- and carbonatite-metasomatised lithospheric mantle. As these trace element characteristics are common for megacrystic zircon in intra-plate basaltic fields globally, they suggest the prevalence of subduction- and carbonatite-metsasomatised mantle under these intraplate volcanic regions. The unusually low δ18O was likely present prior to metasomatic enrichment and may have resulted from high-temperature hydrothermal alteration during initial mantle lithosphere formation at a mid ocean ridge or, possibly, during subduction-related processes associated with continent formation. The combination of proportionally varied contributions from carbonatite- and subduction-metasomatised lithospheric melts with asthenospheric melts may explain the variety of primitive intraplate basalt compositions, including low δ18O reported for some local intraplate lavas.

Place, publisher, year, edition, pages
2019. Vol. 254, p. 21-39
Keywords [en]
Zircon megacrysts, U-Pb chronology, Hf-O isotopes, Trace elements, Mantle metasomatism
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-3597OAI: oai:DiVA.org:nrm-3597DiVA, id: diva2:1375615
Available from: 2019-12-05 Created: 2019-12-05 Last updated: 2019-12-06Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

http://www.sciencedirect.com/science/article/pii/S0016703719301875

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Geochimica et Cosmochimica Acta
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf