Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Exceptional sulfur and iron isotope enrichment in millimetre-sized, early Palaeozoic animal burrows
Show others and affiliations
2020 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 10, no 1Article in journal (Refereed) Published
Abstract [en]

Pyrite-δ34S and -δ56Fe isotopes represent highly sensitive diagnostic paleoenvironmental proxies that express high variability at the bed (< 10 mm) scale that has so far defied explanation by a single formative process. This study reveals for the first time the paleoenvironmental context of exceptionally enriched pyrite-δ34S and -δ56Fe in bioturbated, storm-reworked mudstones of an early Ordovician storm-dominated delta (Tremadocian Beach Formation, Bell Island Group, Newfoundland). Very few studies provide insight into the low-temperature sulfur and iron cycling from bioturbated muddy settings for time periods prior to the evolution of deep soil horizons on land. Secondary ion mass spectroscopy (SIMS) analyses performed on Beach Formation muddy storm event beds reveal spatially distinct δ34S and δ56Fe values in: (a) tubular biogenic structures and trails (δ34S ~ +40‰; δ56Fe ~ −0.5‰), (b) silt-filled Planolites burrows (δ34S ~ +40‰; δ56Fe ~ +0.5 to + 2.1‰), and (c) non-bioturbated mudstone (δ34S ~ +35‰; δ56Fe ~ +0.5‰). δ34S values of well above + 40.0‰ indicate at least some pyrite precipitation in the presence of a 34S-depleted pore water sulfide reservoir, via closed system (Raleigh-type) fractionation. The preferential enrichment of 56Fe in Planolites burrows is best explained via microbially-driven liberation of Fe(II) from solid iron parent phases and precipitation from a depleted 54Fe dissolved Fe(II) reservoir. Rigorous sedimentological analysis represents a gateway to critically test the paleoenvironmental models describing the formation of a wide range of mudstones and elucidates the origins of variability in the global stable S and Fe isotope record.

Place, publisher, year, edition, pages
2020. Vol. 10, no 1
National Category
Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-3904DOI: 10.1038/s41598-020-76296-8OAI: oai:DiVA.org:nrm-3904DiVA, id: diva2:1507023
Available from: 2020-12-06 Created: 2020-12-06 Last updated: 2022-09-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full texthttps://doi.org/10.1038/s41598-020-76296-8

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Scientific Reports
Geochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 45 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf