Microbial life in the nascent Chicxulub craterShow others and affiliations
2020 (English)In: Geology, ISSN 0091-7613, E-ISSN 1943-2682, Vol. 48, p. 328-332Article in journal (Refereed) Published
Abstract [en]
The Chicxulub crater was formed by an asteroid impact at ca. 66 Ma. The impact is considered to have contributed to the end-Cretaceous mass extinction and reduced productivity in the world’s oceans due to a transient cessation of photosynthesis. Here, biomarker profiles extracted from crater core material reveal exceptional insights into the post-impact upheaval and rapid recovery of microbial life. In the immediate hours to days after the impact, ocean resurge flooded the crater and a subsequent tsunami delivered debris from the surrounding carbonate ramp. Deposited material, including biomarkers diagnostic for land plants, cyanobacteria, and photosynthetic sulfur bacteria, appears to have been mobilized by wave energy from coastal microbial mats. As that energy subsided, days to months later, blooms of unicellular cyanobacteria were fueled by terrigenous nutrients. Approximately 200 k.y. later, the nutrient supply waned and the basin returned to oligotrophic conditions, as evident from N2-fixing cyanobacteria biomarkers. At 1 m.y. after impact, the abundance of photosynthetic sulfur bacteria supported the development of water-column photic zone euxinia within the crater.
Place, publisher, year, edition, pages
Boulder: Geological Society of America, 2020. Vol. 48, p. 328-332
Keywords [en]
Cretaceous, Paleogene, extinction, fossil flora, palynology, Mexico
National Category
Other Earth and Related Environmental Sciences
Research subject
Diversity of life; The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-4106DOI: 10.1130/G46799.1OAI: oai:DiVA.org:nrm-4106DiVA, id: diva2:1511564
Funder
Swedish Research Council, 2019-040612020-12-182020-12-182020-12-18Bibliographically approved