Critical Observations of Gaseous Elemental Mercury Air-Sea ExchangeShow others and affiliations
2021 (English)In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 35, no 8, article id e2020GB006742Article in journal (Refereed) Published
Abstract [en]
Air-sea exchange of gaseous elemental mercury (Hg0) is not well constrained, even though it is a major component of the global Hg cycle. Lack of Hg0 flux measurements to validate parameterizations of the Hg0 transfer velocity contributes to this uncertainty. We measured the Hg0 flux on the Baltic Sea coast using micrometeorological methods (gradient-based and relaxed eddy accumulation [REA]) and also simulated the flux with a gas exchange model. The coastal waters were typically supersaturated with Hg0 (mean ± 1σ = 13.5 ± 3.5 ng m−3; ca. 10% of total Hg) compared to the atmosphere (1.3 ± 0.2 ng m−3). The Hg0 flux calculated using the gas exchange model ranged from 0.1–1.3 ng m−2 h−1 (10th and 90th percentile) over the course of the campaign (May 10–June 20, 2017) and showed a distinct diel fluctuation. The mean coastal Hg0 fluxes determined with the two gradient-based approaches and REA were 0.3, 0.5, and 0.6 ng m−2 h−1, respectively. In contrast, the mean open sea Hg0 flux measured with REA was larger (6.3 ng m−2 h−1). The open sea Hg0 flux indicated a stronger wind speed dependence for the Hg0 transfer velocity compared to commonly used parameterizations. Although based on a limited data set, we suggest that the wind speed dependence of the Hg0 transfer velocity is more consistent with gases that have less water solubility than CO2 (e.g., O2). These pioneering flux measurements using micrometeorological techniques show that more such measurements would improve our understanding of air-sea Hg exchange.
Place, publisher, year, edition, pages
2021. Vol. 35, no 8, article id e2020GB006742
Keywords [en]
Mercury, air-sea exchange, relaxed eddy accumulation, transfer velocity
National Category
Environmental Sciences
Research subject
Man and the environment
Identifiers
URN: urn:nbn:se:nrm:diva-4247DOI: 10.1029/2020GB006742OAI: oai:DiVA.org:nrm-4247DiVA, id: diva2:1587166
2021-08-232021-08-232021-08-23Bibliographically approved