Ecological communities are structured by several mechanisms, including temporal, spatial and environmental factors. However, the simultaneous effects of these factors have rarely been studied. Here, we investigated their role on water beetle assemblages sampled over a period of 18 years. Water beetles were sampled in the spring of each year in lotic and lentic water bodies from mainland region of Kalmar and Ă–land Island in southeastern Sweden. We assessed how past assemblage structure, environmental factors and spatial variables correlated with current assemblage structure using a variation partitioning approach. We also tested for correlates of temporal beta diversity of water beetle assemblages with multiple regressions. We found that past water beetle assemblage structure explained current water beetle assemblage structure better than the environmental and spatial correlates. We also observed that temporal beta diversity of water beetle assemblages was mainly due to species gain rather than to species loss. Finally, environmental variables (e.g., hydroperiod, habitat size and hydrology) and timespan between sampling events explained part of temporal beta diversity and contribution of species loss to total assemblage dissimilarity variation. Despite the fact that most variation remained unexplained, we found that ecological factors that have been thought to be important for water beetle richness and abundance in past studies (e.g. water body size, water permanence, shore slope, and whether the water body is lentic or lotic) were also correlated to temporal beta diversity. From a conservation point of view, our study suggest that temporal variability of assemblage structure should be included in biological monitoring because of its potential to predict current assemblage structure.