Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Zircon U Pb and Hf isotope insights into the Mesoproterozoic breakup of supercontinent Columbia from the Sausar Belt, Central Indian Tectonic Zone
Show others and affiliations
2023 (English)In: Chemie der Erde, ISSN 0009-2819, E-ISSN 1611-5864, p. 126054-126054, article id 126054Article in journal (Refereed) Published
Abstract [en]

Credible records of rifting and associated sedimentation and granitoid magmatism coinciding with the Columbia breakup event are not common in the Precambrian Indian continent. We report a 1322 ± 3 Ma concordia age for magmatic zircons from the granitoid rocks of the Sausar mobile belt, Central Indian Tectonic Zone (CITZ). The rocks exhibit geochemical characteristics of A-type granitoid rocks and were generated by the dehydration melting of shallow crust in an extensional tectonic setting. The predominantly negative εHf(t) values and partial melting modelling imply their origin by the reworking of pre-existing granitoid crust. TDM2 (Hf) model ages for these rocks range from 2856 Ma to 1885 Ma suggesting a prolonged period of crustal evolution and reworking of Archean to Paleoproterozoic basement rocks. The temperature for magma generation, determined from the calculated zircon saturation temperature of 874.2 °C is suggestive of melting of a thinned crust that was heated by the upwelling asthenosphere in an extensional tectonic setting. The obtained ages provide evidence for the existence of an extensional event during mid-Mesoproterozoic coinciding with the Columbia breakup event. The extension could also be argued as a local event related to far-field stresses generated due to the ca. 1.6 to 1.5 Ga subduction-collision event at the plate margin farther to the north of the studied region of the CITZ. The recrystallized margins of zircon grains yield 207Pb/206Pb ages between 0.95 Ga and 1.0 Ga implying their alteration during a metamorphic event that can be identified with the final amalgamation and stabilization of the northern and southern Indian blocks along the CITZ, coinciding with the Rodinia assembly, during which the regional structural fabric developed.

Place, publisher, year, edition, pages
Elsevier, 2023. p. 126054-126054, article id 126054
National Category
Geology Geochemistry
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-5512DOI: 10.1016/j.chemer.2023.126054OAI: oai:DiVA.org:nrm-5512DiVA, id: diva2:1822403
Available from: 2023-12-22 Created: 2023-12-22 Last updated: 2023-12-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Kooijman, Ellen
By organisation
Department of Geology
In the same journal
Chemie der Erde
GeologyGeochemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 4 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf