Credible records of rifting and associated sedimentation and granitoid magmatism coinciding with the Columbia breakup event are not common in the Precambrian Indian continent. We report a 1322 ± 3 Ma concordia age for magmatic zircons from the granitoid rocks of the Sausar mobile belt, Central Indian Tectonic Zone (CITZ). The rocks exhibit geochemical characteristics of A-type granitoid rocks and were generated by the dehydration melting of shallow crust in an extensional tectonic setting. The predominantly negative εHf(t) values and partial melting modelling imply their origin by the reworking of pre-existing granitoid crust. TDM2 (Hf) model ages for these rocks range from 2856 Ma to 1885 Ma suggesting a prolonged period of crustal evolution and reworking of Archean to Paleoproterozoic basement rocks. The temperature for magma generation, determined from the calculated zircon saturation temperature of 874.2 °C is suggestive of melting of a thinned crust that was heated by the upwelling asthenosphere in an extensional tectonic setting. The obtained ages provide evidence for the existence of an extensional event during mid-Mesoproterozoic coinciding with the Columbia breakup event. The extension could also be argued as a local event related to far-field stresses generated due to the ca. 1.6 to 1.5 Ga subduction-collision event at the plate margin farther to the north of the studied region of the CITZ. The recrystallized margins of zircon grains yield 207Pb/206Pb ages between 0.95 Ga and 1.0 Ga implying their alteration during a metamorphic event that can be identified with the final amalgamation and stabilization of the northern and southern Indian blocks along the CITZ, coinciding with the Rodinia assembly, during which the regional structural fabric developed.