Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors.
Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
Swedish Museum of Natural History, Research Division.
2004 (English)In: BMC Evolutionary Biology, E-ISSN 1471-2148, Vol. 4, p. 23-Article in journal (Refereed) Published
Abstract [en]

BACKGROUND: The typical antbirds (Thamnophilidae) form a monophyletic and diverse family of suboscine passerines that inhabit neotropical forests. However, the phylogenetic relationships within this assemblage are poorly understood. Herein, we present a hypothesis of the generic relationships of this group based on Bayesian inference analyses of two nuclear introns and the mitochondrial cytochrome b gene. The level of phylogenetic congruence between the individual genes has been investigated utilizing Bayes factors. We also explore how changes in the substitution models affected the observed incongruence between partitions of our data set.

RESULTS: The phylogenetic analysis supports both novel relationships, as well as traditional groupings. Among the more interesting novel relationship suggested is that the Terenura antwrens, the wing-banded antbird (Myrmornis torquata), the spot-winged antshrike (Pygiptila stellaris) and the russet antshrike (Thamnistes anabatinus) are sisters to all other typical antbirds. The remaining genera fall into two major clades. The first includes antshrikes, antvireos and the Herpsilochmus antwrens, while the second clade consists of most antwren genera, the Myrmeciza antbirds, the "professional" ant-following antbirds, and allied species. Our results also support previously suggested polyphyly of Myrmotherula antwrens and Myrmeciza antbirds. The tests of phylogenetic incongruence, using Bayes factors, clearly suggests that allowing the gene partitions to have separate topology parameters clearly increased the model likelihood. However, changing a component of the nucleotide substitution model had much higher impact on the model likelihood.

CONCLUSIONS: The phylogenetic results are in broad agreement with traditional classification of the typical antbirds, but some relationships are unexpected based on external morphology. In these cases their true affinities may have been obscured by convergent evolution and morphological adaptations to new habitats or food sources, and genera like Myrmeciza antbirds and the Myrmotherula antwrens obviously need taxonomic revisions. Although, Bayes factors seem promising for evaluating the relative contribution of components to an evolutionary model, the results suggests that even if strong evidence for a model allowing separate topology parameters is found, this might not mean strong evidence for separate gene phylogenies, as long as vital components of the substitution model are still missing.

Place, publisher, year, edition, pages
2004. Vol. 4, p. 23-
National Category
Biological Systematics Evolutionary Biology
Research subject
Diversity of life
Identifiers
URN: urn:nbn:se:nrm:diva-454DOI: 10.1186/1471-2148-4-23PubMedID: 15283860OAI: oai:DiVA.org:nrm-454DiVA, id: diva2:734916
Available from: 2014-07-22 Created: 2014-07-22 Last updated: 2024-01-17Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMed

Search in DiVA

By author/editor
Irestedt, MartinNylander, Johan A AEricson, Per G P
By organisation
Department of Bioinformatics and GeneticsResearch Division
In the same journal
BMC Evolutionary Biology
Biological SystematicsEvolutionary Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 172 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf