Genetically polymorphic species offer the possibility to study maintenance of genetic variation and the potential role for genetic drift in population divergence. Indirect inference of the selection regimes operating on polymorphic traits can be achieved by comparing population divergence in neutral genetic markers with population divergence in trait frequencies. Such an approach could further be combined with ecological data to better understand agents of selection. Here, we infer the selective regimes acting on a polymorphic mating trait in an insect group; the dorsal structures (either rough or smooth) of female diving beetles. Our recent work suggests that the rough structures have a sexually antagonistic function in reducing male mating attempts. For two species (Dytiscus lapponicus andGraphoderus zonatus), we could not reject genetic drift as an explanation for population divergence in morph frequencies, whereas for the third (Hygrotus impressopunctatus) we found that divergent selection pulls morph frequencies apart across populations. Furthermore, population morph frequencies in H. impressopunctatus were significantly related to local bioclimatic factors, providing an additional line of evidence for local adaptation in this species. These data, therefore, suggest that local ecological factors and sexual conflict interact over larger spatial scales to shape population divergence in the polymorphism.