Mars exhibits ample evidence for an ancient surfacehydrosphere. The oxygen isotope compositions of carbonateminerals and alteration products in martian meteoritessuggest that this ancient hydrosphere was not in isotopicequilibrium with the martian lithosphere1–4. Martian meteoriteNWA 7533 is composed of regolith breccia from the heavilycratered terrains of ancient Mars and contains zircon grainsfor which U–Pb ages have been reported5. Here we reportvariations between the oxygen isotopic compositions offour zircon grains from NWA 7533. We propose that thesevariations can be explained if the mantle melts from whichthe zircon crystallized approximately 4.43Gyr ago hadassimiliated 17O-enriched regolith materials, and that someof the zircon grains, while in a metamict state, were lateraltered by low-temperature fluids near the surface less than1.7Gyr ago. Enrichment of the martian regolith in 17O beforethe zircon crystallized, presumably through exchange withthe 17O-enriched atmosphere or hydrosphere during surfacealteration, suggests that the thick primary atmosphere ofMars was lost within the first 120Myr after accretion. Weconclude that the observed variation of 17O anomalies in zirconfrom NWA 7533 points to prolonged interaction between themartian regolith, atmosphere and hydrosphere.