Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The source of Proterozoic anorthosite and rapakivi granite magmatism: evidence from combined in situ Hf–O isotopes of zircon in the Ahvenisto complex, southeastern Finland.
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
2015 (English)In: Journal of the Geological Society, ISSN 0016-7649, E-ISSN 2041-479X, Vol. 172, p. 103-112Article in journal (Refereed) Published
Abstract [en]

The isotope compositions of massif-type anorthosites in Proterozoic anorthosite–mangerite–charnockite–granite (AMCG) complexes are commonly dominated by crustal values. Olivine-bearing anorthositic rocks in several AMCG suites have, however, been shown to display juvenile character, suggesting that variably depleted mantle reservoirs were involved in their genesis. A coupled in situ zircon Hf–O isotope dataset from the 1.64 Ga Ahvenisto AMCG complex in the 1.54–1.65 Ga Fennoscandian rapakivi granite–massif-type anorthosite province reveals correlated juvenile isotope signals (δ18Ozrn = 5.4–6.6‰; initial ϵHf = −1.1 to +3.4) in the most primitive gabbroic rock type of the suite suggesting a depleted mantle origin for the anorthositic rocks. This signal is not as prominent in the more evolved co-magmatic anorthositic rocks (δ18Ozrn = 6.3–7.8‰; initial ϵHf = −0.8 to +2.0), most probably owing to contamination of the mantle-derived primary magma by crustal material. A rapakivi granite associated with the anorthositic rocks has different isotope composition (δ18Ozrn = 7.4–8.6‰; initial ϵHf = −2.1 to +0.5) that points to a crustal source.

Place, publisher, year, edition, pages
2015. Vol. 172, p. 103-112
National Category
Geology
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-1510DOI: 10.1144/jgs2014-013OAI: oai:DiVA.org:nrm-1510DiVA, id: diva2:877161
Available from: 2015-12-05 Created: 2015-12-05 Last updated: 2017-12-01Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Journal of the Geological Society
Geology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 70 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf