Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Single zircon Hf-O isotope constraints on the origin of A-type granites from the Jabal Al-Hassir ring complex, Saudi Arabia.
Swedish Museum of Natural History, Department of Geology. (Nordsim)ORCID iD: 0000-0003-2227-577X
2015 (English)In: Precambrian Research, ISSN 0301-9268, E-ISSN 1872-7433, Vol. 256, 131-147 p.Article in journal (Refereed) Published
Abstract [en]

The Jabal Al-Hassir ring complex in the southern Arabian Shield is an alkaline granite complex comprising an inner core of biotite granite that outwardly becomes a porphyritic sodic-calcic amphibole (ferrobarroisite–katophorite) granite. A combined study of mineral chemistry and single zircon Hf–O zircon isotope analyses was carried out to infer the magma sources of the Neoproterozoic post-collisional A-type granitoids in Saudi Arabia. The granitic rocks show high positive initial ɛHf(t) values of +7.0 to +10.3 and δ18O values of +5.8‰ to +7.4‰ that are consistent with melting of a juvenile crustal protolith that was formed during the Neoproterozoic assembly of the Arabian-Nubian Shield (ANS). Crustal-model ages (Hf-tNC) of 0.71–0.94 Ga indicate minor contribution from an older continental crust in the formation of the Jabal Al-Hassir granitic rocks (crystallization age = 620 ±3 Ma), but any such component is likely to be Neoproterozoic in age. Temperature and oxygen fugacity (ƒO2) estimates suggested that the Jabal Al-Hassir A-type granite magma was generated at high temperature (820–1050 °C) and low ƒO2. Geochemical characteristics (e.g., low ƒO2), geochronological data, and Hf and O isotope compositions, indicate that the magmas of the Neoproterozoic A-type granites of the Jabal Al-Hassir ring complex were likely generated by crustal partial melting of a juvenile Neoproterozoic lower crustal tholeiitic rocks, following collision between East and West Gondwana in the final stages of the evolution of the Arabian Shield.

Place, publisher, year, edition, pages
2015. Vol. 256, 131-147 p.
National Category
Geology
Research subject
The changing Earth
Identifiers
URN: urn:nbn:se:nrm:diva-1515DOI: 10.1016/j.precamres.2014.11.007OAI: oai:DiVA.org:nrm-1515DiVA: diva2:877166
Available from: 2015-12-05 Created: 2015-12-05 Last updated: 2015-12-07Bibliographically approved

Open Access in DiVA

No full text

Other links

Publisher's full text

Search in DiVA

By author/editor
Whitehouse, Martin J.
By organisation
Department of Geology
In the same journal
Precambrian Research
Geology

Search outside of DiVA

GoogleGoogle Scholar

Altmetric score

Total: 142 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf