Ändra sökning
Avgränsa sökresultatet
12345 1 - 50 av 244
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Träffar per sida
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
  • Standard (Relevans)
  • Författare A-Ö
  • Författare Ö-A
  • Titel A-Ö
  • Titel Ö-A
  • Publikationstyp A-Ö
  • Publikationstyp Ö-A
  • Äldst först
  • Nyast först
  • Skapad (Äldst först)
  • Skapad (Nyast först)
  • Senast uppdaterad (Äldst först)
  • Senast uppdaterad (Nyast först)
  • Disputationsdatum (tidigaste först)
  • Disputationsdatum (senaste först)
Markera
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Alvarez, Belinda
    et al.
    Frings, Patrick J
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Clymans, Wim
    Fontorbe, Guillaume
    Conley, Daniel
    Assessing the Potential of Sponges (Porifera) as Indicators of Ocean Dissolved Si Concentrations2017Ingår i: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 4, nr 373Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    We explore the distribution of sponges along dissolved silica (dSi) concentration gradients to test whether sponge assemblages are related to dSi and to assess the validity of fossil sponges as a palaeoecological tool for inferring dSi concentrations of the past oceans. We extracted sponge records from the publically available Global Biodiversity Information Facility (GBIF) database and linked these records with ocean physiochemical data to evaluate if there is any correspondence between dSi concentrations of the waters sponges inhabit and their distribution. Over 320,000 records of Porifera were available, of which 62,360 met strict quality control criteria. Our analyses was limited to the taxonomic levels of family, order and class. Because dSi concentration is correlated with depth in the modern ocean, we also explored sponge taxa distributions as a function of depth. We observe that while some sponge taxa appear to have dSi preferences (e.g., class Hexactinellida occurs mostly at high dSi), the overall distribution of sponge orders and families along dSi gradients is not sufficiently differentiated to unambiguously relate dSi concentrations to sponge taxa assemblages. We also observe that sponge taxa tend to be similarly distributed along a depth gradient. In other words, both dSi and/or another variable that depth is a surrogate for, may play a role in controlling sponge spatial distribution and the challenge is to distinguish between the two. We conclude that inferences about palaeo-dSi concentrations drawn from the abundance of sponges in the stratigraphic records must be treated cautiously as these animals are adapted to a great range of dSi conditions and likely other underlying variables that are related to depth. Our analysis provides a quantification of the dSi ranges of common sponge taxa, expands on previous knowledge related to their bathymetry preferences and suggest that sponge taxa assemblages are not related to particular dSi conditions. 

  • 2. Anand, Rajagopal
    et al.
    Balakrishnan, Srinivasan
    Kooijman, Ellen
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Mezger, Klaus
    Neoarchean crustal growth by accretionary processes: Evidence from combined zircon–titanite U–Pb isotope studies on granitoid rocks around the Hutti greenstone belt, eastern Dharwar Craton, India2014Ingår i: Journal of Asian Earth Sciences, ISSN 1367-9120, E-ISSN 1878-5786, Vol. 79, s. 72-85Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Neoarchean Hutti greenstone belt hosts mesothermal gold deposits and is surrounded by granitoid rocks on all sides. Combined U–Pb dating of zircon and titanite from the granitoid rocks constrains their emplacement history and subsequent geologic evolution. The Golapalli and Yelagatti granodiorites occurring to the north of the Hutti greenstone belt were emplaced at 2569 ± 17 Ma. The Yelagatti granodiorite yielded a younger titanite age of 2530 ± 6 Ma which indicates that it was affected by a post-crystallization thermal event that exceeded the titanite closure temperature. The western granodiorites from Kardikal have identical titanite and zircon ages of 2557 ± 6 Ma and 2559 ± 19 Ma, respectively. The eastern Kavital granodiorites yielded titanite ages of 2547 ± 6 Ma and 2544 ± 24 Ma which are identical to the published U–Pb zircon SHRIMP ages. These ages imply that the granitoid rocks surrounding the Hutti greenstone belt were formed as discrete batholiths within a short span of ca. 40 Ma between 2570 Ma and 2530 Ma ago. They were juxtaposed by horizontal tectonic forces against the supracrustal rocks that had formed in oceanic settings at the end of the Archean. The first phase of gold mineralization coincided with the last phase of granodiorite intrusion in the Hutti area. A metamorphic overprint occurred at ca. 2300 Ma ago that reset the Rb–Sr isotope system in biotites and possibly caused hydrothermal activity and enrichment of Au in the ore lodes. The eastern Dharwar Craton consists of quartz monzodiorite–granodiorite–granite suites of rocks that are younger than the greenstone belts that are older than ~2650 Ma reported from earlier studies. The granitoid magmatism took place between 2650 and 2510 Ma ago indicating accretionary growth of the eastern Dharwar Craton.

  • 3. Andersson, Stefan S.
    et al.
    Wagner, Thomas
    Jonsson, Erik
    Fusswinkel, Tobias
    Whitehouse, Martin J.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Apatite as a tracer of the source, chemistry and evolution of ore-forming fluids: The case of the Olserum-Djupedal REE-phosphate mineralisation, SE Sweden2019Ingår i: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 255, s. 163-187Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    This study explores the suitability of apatite as a tracer of the source(s), chemistry, and evolution of ore-forming hydrothermal fluids. This is tested by analysing the halogen (F, Cl, Br, and I), stable Cl isotopic, and trace element compositions of fluorapatite from the regional-scale Olserum-Djupedal rare earth element (REE) phosphate mineralisation in SE Sweden, which is dominated by monazite-(Ce), xenotime-(Y), and fluorapatite. The primary hydrothermal fluid flow system is recorded in a sequence from proximal granite-hosted to distal metasediment-hosted fluorapatite. Along this sequence, primary fluorapatite shows a gradual increase of Cl and Br concentrations and in (Gd/Yb)N, a decrease of F and I concentrations, a decrease in δ37Cl values, in (La/Sm)N, and partly in (La/Yb)N and (Y/Ho)N. Local compositional differences of halogen and trace element concentrations have developed along rims and in domains adjacent to fractures of fluorapatite due to late-stage partial reaction with fracture fluids. These differences are insignificant compared to the larger deposit-scale zoning. This suggests that apatite can retain the primary record of the original ore-forming fluid despite later overprinting fluid events. The agreement between Br/Cl and I/Cl ratios of apatite and those of co-existing fluid inclusions at lower temperatures indicates that only a minor fractionation of Br from I occurs during apatite precipitation. The halogen ratios of apatite can thus be used as a first-order estimate for the composition of the ore-forming fluid. Taking the small fractionation factors for Cl isotopes between apatite and co-existing fluid at high temperatures into account, we propose that the Cl isotopic composition of apatite and the halogen ratios derived from the apatite composition can be used jointly to trace the source(s) of ore-forming fluids. By contrast, most trace elements incorporated in apatite are affected by the host rock environment and by fluid-mineral partitioning due to growth competition between co-crystallising minerals. Collectively, apatite is sensitive to changing fluid compositions, yet it is also able to record the character of primary ore-forming fluids. Thus, apatite is suitable for tracing the origin, chemistry, and evolution of fluids in hydrothermal ore-forming settings.

  • 4.
    Andreozzi, Giovanni
    et al.
    Sapienza Università di Roma, Italy.
    D'Ippolito, Veronica
    Sapienza Università di Roma, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Bosi, Ferdinando
    Sapienza Università di Roma, Italy.
    Color mechanisms in spinel: a multi-analytical investigation of natural crystals with a wide range of coloration.2019Ingår i: Physics and chemistry of minerals, ISSN 0342-1791, E-ISSN 1432-2021, Vol. 46, nr 4, s. 343-360Artikel i tidskrift (Refereegranskat)
  • 5. Augustsson, Carita
    et al.
    Rüsing, Tobias
    Niemeyer, Hans
    Kooijman, Ellen
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Berndt, Jasper
    Bahlburg, Heinrich
    Zimmermann, Udo
    0.3 byr of drainage stability along the Palaeozoic palaeo-Pacific Gondwana margin; a detrital zircon study2015Ingår i: Journal of the Geological Society, ISSN 0016-7649, E-ISSN 2041-479X, Vol. 172, s. 186-200Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The palaeo-Pacific margin of Gondwana in the present-day south–central Andes is marked by tectonic activity related to subduction and terrane accretion. We present detrital zircon U–Pb data encompassing the Palaeozoic era in northern Chile and northwestern Argentina. Cathodoluminescence images reveal dominantly magmatic zircon barely affected by abrasion and displaying only one growth phase. The main age clusters for these zircon grains are Ediacaran to Palaeozoic with an additional peak at 1.3–0.9 Ga and they can be correlated with ‘Grenvillian’ age, and the Brasiliano, Pampean, and Famatinian orogenies. The zircon data reveal main transport from the nearby Ordovician Famatinian arc and related rocks. The Silurian sandstone units are more comparable with Cambrian units, with Brasiliano and Transamazonian ages (2.2–1.9 Ga) being more common, because the Silurian deposits were situated within or east of the (extinct) Famatinian arc. Hence, the arc acted as a transport barrier throughout Palaeozoic time. The complete suite of zircon ages does not record the accretions of exotic terranes or the Palaeozoic glacial periods. We conclude that the transport system along the palaeo-Pacific margin of Gondwana remained stable for c. 0.3 byr and that provenance data do not necessarily reflect the interior of a continent. Hence, inherited geomorphological features must be taken into account when detrital mineral ages are interpreted.

  • 6.
    Babechuk, Michael
    et al.
    Isotope Geochemistry Group, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
    Weimar, Nadine
    Isotope Geochemistry Group, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
    Kleinhanns, Ilka
    Isotope Geochemistry Group, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
    Eroglu, Suemeyya
    Isotope Geochemistry Group, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
    Swanner, Elizabeth
    Department of Geological & Atmospheric Sciences, Iowa State University, Ames, USA.
    Kenny, Gavin
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Kamber, Balz
    Department of Geology, Trinity College Dublin, Dublin, Ireland.
    Schoenberg, Ronny
    Isotope Geochemistry Group, Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany.
    Pervasively anoxic surface conditions at the onset of the Great Oxidation Event: New multi-proxy constraints from the Cooper Lake paleosol2019Ingår i: Precambrian Research, ISSN 0301-9268, E-ISSN 1872-7433, Vol. 323, s. 126-163Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Oceanic element inventories derived from marine sedimentary rocks place important constraints on oxidativecontinental weathering in deep time, but there remains a scarcity in complementary observations directly fromcontinental sedimentary reservoirs. This study focuses on better defining continental weathering conditions nearthe Archean-Proterozoic boundary through the multi-proxy (major and ultra-trace element, Fe and Cr stableisotopes, μ-XRF elemental mapping, and detrital zircon U-Pb geochronology) investigation of the ca. 2.45 billionyear old (giga annum, Ga) Cooper Lake paleosol (saprolith) developed on a sediment-hosted mafic dike withinthe Huronian Supergroup (Ontario, Canada).Throughout the variably altered Cooper Lake saprolith, ratios of immobile elements (Nb, Ta, Zr, Hf, Th, Al, Ti)are constant, indicating a uniform pre-alteration dike composition, lack of extreme pH weathering conditions,and no major influence from ligand-rich fluids during weathering or burial metasomatism/metamorphism. Theloss of Mg, Fe, Na, Sr, and Li, a signature of albite and ferromagnesian silicate weathering, increases towards thetop of the preserved profile (unconformity) and dike margins. Coupled bulk rock behaviour of Fe-Mg-Mn and colocalizationof Fe-Mn in clay minerals (predominantly chlorite) indicates these elements were solubilized primarilyin their divalent state without Fe/Mn-oxide formation. A lack of a Ce anomaly and immobility of Mo, V, and Cr further support pervasively anoxic weathering conditions. Subtle U enrichment, if primary, is the onlygeochemical evidence that could be consistent with oxidative element mobilization. The leaching of ferromagnesiansilicates was accompanied by variable mobility and depletion of transition metals with a relativedepletion order of Fe≈Mg≈Zn > Ni > Co > Cu (Cu being significantly influenced by secondary sulfideformation). Mild enrichment of heavy Fe isotopes (δ56/54Fe from 0.169 to 0.492‰) correlating with Fe depletionin the saprolith indicates open-system loss of isotopically light aqueous Fe(II). Minor REE+Y fractionation withincreasing alteration intensity, including a decreasing Eu anomaly and Y/Ho ratio, is attributed to albitebreakdown and preferential scavenging of HREE > Y by clay minerals, respectively. Younger metasomatismresulted in the addition of several elements (K, Rb, Cs, Be, Tl, Ba, Sn, In, W), partly or wholly obscuring theirearlier paleo-weathering trends.The behavior of Cr at Cooper Lake can help test previous hypotheses of an enhanced, low pH-driven continentalweathering flux of Cr(III) to marine reservoirs between ca. 2.48–2.32 Ga and the utility of the stable Crisotope proxy of Mn-oxide induced Cr(III) oxidation. Synchrotron μ-XRF maps and invariant Cr/Nb ratios revealcomplete immobility of Cr despite its distribution amongst both clay-rich groundmass and Fe-Ti oxides.Assuming a pH-dependent, continental source of Cr(III) to marine basins, the Cr immobility at Cooper Lakeindicates either that signatures of acidic surface waters were localized to uppermost and typically unpreservedregolith horizons or were geographically restricted to acid-generating point sources. However, given detritalpyrite preservation in overlying fluvial sequences, it is probable that the oxidative sulfide corrosion required todrive surface pH < 4 lagged behind in this region relative to other early Proterozoic sequences. The entiresaprolith exhibits a consistently light stable Cr isotope composition (δ53/52Cr: −0.321 ± 0.038‰, 2sd, n=34)that cannot be linked to Cr(III) oxidation and is instead interpreted to have a magmatic origin.

  • 7.
    Barnes, Christopher
    et al.
    Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland.
    Jarosław, Majka
    Department of Earth Sciences, Uppsala University, Uppsala, Sweden.
    Schneider, David
    Department of Earth and Environmental Sciences, University of Ottawa, Ottawa, Canada.
    Walczak, Katarzyna
    Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland.
    Bukała, Michał
    Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland.
    Kośmińska, Karolina
    Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Kraków, Poland.
    Tokarski, Tomasz
    Academic Center for Materials and NanotechnologyAGH University of Science and TechnologyKrakówPoland.
    Karlsson, Andreas
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    High-spatial resolution dating of monazite and zircon reveals the timing of subduction–exhumation of the Vaimok Lens in the SeveNappe Complex (Scandinavian Caledonides)2019Ingår i: Contributions to Mineralogy and Petrology, ISSN 0010-7999, E-ISSN 1432-0967, Vol. 174, nr 1, artikel-id 5Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    In-situ monazite Th–U–total Pb dating and zircon LA–ICP–MS depth-profiling was applied to metasedimentary rocks from the Vaimok Lens in the Seve Nappe Complex (SNC), Scandinavian Caledonides. Results of monazite Th–U–total Pb dating, coupled with major and trace element mapping of monazite, revealed 603 ± 16 Ma Neoproterozoic cores surrounded byrims that formed at 498 ± 10 Ma. Monazite rim formation was facilitated via dissolution–reprecipitation of Neoproterozoic monazite. The monazite rims record garnet growth as they are depleted in Y2O3 with respect to the Neoproterozoic cores. Rims are also characterized by relatively high SrO with respect to the cores. Results of the zircon depth-profiling revealed igneous zircon cores with crystallization ages typical for SNC metasediments. Multiple zircon grains also exhibit rims formedby dissolution–reprecipitation that are defined by enrichment of light rare earth elements, U, Th, P, ± Y, and ± Sr. Rims also have subdued Eu anomalies (Eu/Eu* ≈ 0.6–1.2) with respect to the cores. The age of zircon rim formation was calculated from three metasedimentary rocks: 480 ± 22 Ma; 475 ± 26 Ma; and 479 ± 38 Ma. These results show that both monazite and zircon experienced dissolution–reprecipitation under high-pressure conditions. Caledonian monazite formed coeval with garnet growth during subduction of the Vaimok Lens, whereas zircon rim formation coincided with monazite breakdown to apatite, allanite and clinozoisite during initial exhumation.

  • 8. Barão, Lúcia
    et al.
    Vandevenne, Floor
    Clymans, Wim
    Frings, Patrick J
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Ragueneau, Olivier
    Meire, Patrick
    Conley, Daniel J.
    Struyf, Eric
    Alkaline-extractable silicon from land to ocean: A challenge for biogenic silicon determination2015Ingår i: Limnology and Oceanography: Methods, ISSN 1541-5856, E-ISSN 1541-5856, s. n/a-n/aArtikel i tidskrift (Refereegranskat)
    Abstract [en]

    The biogeochemical cycling of silicon (Si) along the land-to-ocean continuum is studied by a variety of research fields and for a variety of scientific reasons. However, there is an increasing need to refine the methodology and the underlying assumptions used to determine biogenic silica (BSi) concentrations. Recent evidence suggests that contributions of nonbiogenic sources of Si dissolving during alkaline extractions, not corrected by standard silicate mineral dissolution correction protocols, can be substantial. The ratio between dissolved Si and aluminum (Al) monitored continuously during the alkaline extraction can be used to infer the origin of the Si fractions present. In this study, we applied both a continuous analysis method (0.5 M NaOH) and a traditional 0.1 M Na2CO3 extraction to a wide array of samples: (1) terrestrial vegetation, (2) soils from forest, cropland and pasture, (3) lake sediments, (4) suspended particulate matter and sediments from rivers, (5) sediments from estuaries and salt marshes and (6) ocean sediments. Our results indicate that the 0.1 M Na2CO3 extraction protocol can overestimate the BSi content, by simultaneously dissolving Si fractions of nonbiogenic origin that may represent up to 100% of the Si traditionally considered as biogenic, hampering interpretation especially in some deeper soil horizons, rivers and coastal oceanic sediments. Moreover, although the term amorphous Si was coined to reflect a growing awareness of nonbiogenic phases we show it is actually inappropriate in samples where silicate minerals may account for a large part of the extracted Si even after linear mineral correction.

  • 9.
    Bellucci, Jeremy
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pb Isotopic Composition of Panamanian Colonial Majolica by LA-ICP-MS2016Ingår i: Recent Advances in Laser Ablation ICP-MS for Archaeology / [ed] L. Dussubieux, Springer Berlin/Heidelberg, 2016Kapitel i bok, del av antologi (Refereegranskat)
    Abstract [en]

    Panama ́ Viejo, founded in 1519 by the Spanish explorer Pedrarias Da ́vila, was the first permanent European settlement on the Pacific Ocean, and became a city, by royal decree, in 1521. Shortly after its creation, the city became an important base for trade with Spain. In 1671, the English pirate Henry Morgan waged an attack on Panama ́ Viejo, which resulted in a fire that destroyed the entire city. A new settlement built a few miles west, called Casco Antiguo or San Felipe, is now the historic district of modern Panama City. The Pb isotopic compositions of the glazes on the surface of sixteenth to seventeenth century majolica pottery sherds from Panama Viejo and Casco Antiguo (both in Panama), and Lima (Peru) were determined via non-destructive laser ablation multi-collector ICP-MS (LA-MC-ICP-MS). The contrast in Pb isotopic compositions in the glazes on ceramics recovered in different locations demonstrate that early majolica pottery production during this period used Pb obtained from the Andes. However, the Pb used in later majolica production in Panama is of Spanish origin. After Panama ́ Viejo was burned to the ground, Panamanian majolica production ended.

  • 10.
    Bellucci, Jeremy
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Nemchin, Alexander
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Whitehouse, Martin
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Ross, Kielman
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Snape, Joshua
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pidgeon, Robert
    Geochronology of Hadean zircon grains from the Jack Hills, Western Australia constrained by quantitative scanning ion imaging2018Ingår i: Chemical Geology, ISSN 0009-2541, E-ISSN 1872-6836, Vol. 476, s. 469-480Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Five Hadean (> 4 Ga) aged zircon grains from the Jack Hills metasedimentary belt have been investigated by a secondary ion mass spectrometry scanning ion image technique. This technique has the ability to obtain accurate and precise full U-Pb systematics on a scale < 5 μm, as well as document the spatial distribution of U, Th and Pb. All five of the grains investigated here have complex cathodoluminescence patterns that correlate to different U, Th, and Pb concentration domains. The age determinations for these different chemical zones indicate multiple reworking events that are preserved in each grain and have affected the primary crystalized zircon on the scale of < 10 μm, smaller than conventional ion microprobe spot analyses. In comparison to the spot analyses performed on these grains, these new scanning ion images and age determinations indicate that almost half of the spot analyses have intersected several age and chemical domains in both fractured and unfractured parts of the individual crystals. Some of these unfractured, mixed domain spot analyses have concordant ages that are inaccurate. Thus, if the frequency of spot analyses intersecting mixed domains here is even close to representative of all other studies of the Jack Hills zircon population, it makes the interpretation of any trace element, Hf, or O isotopic data present in the literature tenuous. Lastly, all of the grains analysed here preserve at least two distinguishable 207Pb/206Pb ages. These ages are preserved in core-rim and/or complex internal textural relationships in unfractured domains. These secondary events took place at ca. 4.3, 4.2, 4.1, 4.0, 3.7, and 2.9 Ga, which are coincident with previously determined statistically robust age peaks present in this zircon population.

  • 11.
    Bellucci, Jeremy
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Nemchin, Alexander
    Whitehouse, Martin
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Snape, Joshua
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Bland, Phil
    Benedix, Gretchen
    Roszjar, Julia
    Pb evolution in the Martian mantle2018Ingår i: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 485, s. 79-87Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The initial Pb compositions of one enriched shergottite, one intermediate shergottite, two depleted shergottites, and Nakhla have been measured by Secondary Ion Mass Spectrometry (SIMS). These values, in addition to data from previous studies using an identical analytical method performed on three enriched shergottites, ALH 84001, and Chassigny, are used to construct a unified and internally consistent model for the differentiation history of the Martian mantle and crystallization ages for Martian meteorites. The differentiation history of the shergottites and Nakhla/Chassigny are fundamentally different, which is in agreement with short-lived radiogenic isotope systematics. The initial Pb compositions of Nakhla/Chassigny are best explained by the late addition of a Pb-enriched component with a primitive, non-radiogenic composition. In contrast, the Pb isotopic compositions of the shergottite group indicate a relatively simple evolutionary history of the Martian mantle that can be modeled based on recent results from the Sm–Nd system. The shergottites have been linked to a single mantle differentiation event at 4504 Ma. Thus, the shergottite Pb isotopic model here reflects a two-stage history 1) pre-silicate differentiation (4504 Ma) and 2) post-silicate differentiation to the age of eruption (as determined by concordant radiogenic isochron ages). The μ-values (238U/204Pb) obtained for these two different stages of Pb growth are μ1 of 1.8 and a range of μ2 from 1.4–4.7, respectively. The μ1-value of 1.8 is in broad agreement with enstatite and ordinary chondrites and that proposed for proto Earth, suggesting this is the initial μ-value for inner Solar System bodies. When plotted against other source radiogenic isotopic variables (Sri, γ187Os, ε143Nd, and ε176Hf), the second stage mantle evolution range in observed mantle μ-values display excellent linear correlations (r2 > 0.85) and represent a spectrum of Martian mantle mixing-end members (depleted, intermediate, enriched).

  • 12.
    Bellucci, Jeremy
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Whitehouse, Martin
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Snape, Joshua
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars2017Ingår i: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 458, s. 192-202Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The Cl isotopic compositions and halogen (Cl, F, Br, and I) abundances in phosphates from eight Martian meteorites, spanning most rock types and ages currently available, have been measured in situ by Secondary Ion Mass Spectrometry (SIMS). Likewise, the distribution of halogens has been documented by x-ray mapping. Halogen concentrations range over several orders of magnitude up to some of the largest concentrations yet measured in Martian samples or on the Martian surface, and the inter-element ratios are highly variable. Similarly, Cl isotope compositions exhibit a larger range than all pristine terrestrial igneous rocks. Phosphates in ancient (>4 Ga) meteorites (orthopyroxenite ALH 84001 and breccia NWA 7533) have positive d37Cl anomalies (+1.1 to +2.5 ‰).  These samples also exhibit explicit whole rock and grain scale evidence for hydrothermal or aqueous activity. In contrast, the phosphates in the younger basaltic Shergottite meteorites (<600 Ma) have negative d37Cl anomalies (-0.2 to -5.6 ‰).  Phosphates with the largest negative d37Cl anomalies display zonation where the rims of the grains are enriched in all halogens and have significantly more negative d37Cl anomalies indicating interaction with the surface of Mars during the latest stages of basalt crystallization. The phosphates with no textural, major element, or halogen enrichment evidence for mixing with this surface reservoir have an average d37Cl of -0.6 ‰, which suggests a similar Cl isotope composition between Mars, the Earth, and the Moon. The only process known to fractionate Cl isotopes, both positively and negatively, is formation of perchlorate, which has been detected in weight percent concentrations on the Martian surface. The age range and obvious mixing history of the phosphates studied here suggest perchlorate formation and halogen cycling via brines, which have also been observed on the Martian surface, has been active throughout Martian history. 

  • 13.
    Biagion, Cristian
    et al.
    Università di Pisa, Italy.
    Bosi, Ferdinando
    Sapienza Università di Roma, Italy.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pasero, Marco
    Università di Pisa, Italy.
    The crystal structure of turneaureite, Ca5(AsO4)3Cl, the arsenate analog of chlorapatite and its relationships with the arsenate apatites johnbaumite and svabite2017Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 102, s. 1981-1986Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The crystal structure of turneaureite, ideally Ca5(AsO4)3Cl, was studied using a specimen from the Brattfors mine, Nordmark, Värmland, Sweden, by means of single-crystal X-ray diffraction data. The structure was refinedto R1 = 0.017 on the basis of 716 unique reflectios with Fo > 4σ(Fo) in the P63/m space group, with unit-cell parameters a = 9.9218(3), c = 6.8638(2) Å, V = 585.16(4) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%; average of 10 spot analyses): SO3 0.22, P2O5 0.20, V2O5 0.01, As2O5 51.76, SiO2 0.06, CaO 41.39, MnO 1.89, SrO 0.12, BaO 0.52, PbO 0.10, Na2O 0.02, F 0.32, Cl 2.56, H2Ocalc 0.58, O(≡F+Cl) –0.71, total 99.04. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.82Mn0.17Ba0.02Sr0.01)∑5.02 (As2.94P0.02S0.02Si0.01)∑2.99O12[Cl0.47(OH)0.42F0.11]∑1.00.Turneaureite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. Owing to its particular chemical composition, the studied turneaureite can be considered as a ternary calcium arsenate apatite; consequently it has several partially filledanion sites within the anion columns. Polarized single-crystal FTIR spectra of the studied sample indicate stronger hydrogen bonding and less diverse short-range atom arrangements around (OH) groups in turneaureite as compared to the related minerals johnbaumite and svabite. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.

  • 14.
    Biagioni, Cristian
    et al.
    Università di Pisa, Italy.
    Bindi, Luca
    Università di Firenze, Italy.
    Mauro, Daniela
    Università di Pisa.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal chemistry of sulfates from the Apuan Alps (Tuscany, Italy). V. Scordariite, K8(Fe3+0.67ο0.33)[Fe3+3O(SO4)6(H2O)3)]2(H2O)11 , a new metavoltine-related mineral2019Ingår i: Minerals, ISSN 2075-163X, E-ISSN 2075-163X, Vol. 9, nr 11, s. 1-14, artikel-id 0702Artikel i tidskrift (Refereegranskat)
  • 15.
    Biagioni, Cristian
    et al.
    Università di Pisa, Italy.
    Bosi, Ferdinando
    Sapienza Università di Roma, Italy.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pasero, Marco
    Università di Pisa, Italy.
    The crystal structure of svabite, Ca5(AsO4)3F, an arsenate member of the apatite supergroup2016Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 101, s. 1750-1755Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The crystal structure of svabite, ideally Ca5(AsO4)3F, was studied using a specimen from the Jakobsberg mine, Värmland, Sweden, by means of single-crystal X‑ray diffraction data. The structure was refined to R1 = 0.032 on the basis of 928 unique reflections with Fo > 4s(Fo) in the P63/m space group, with unit-cell parameters a = 9.7268(5), c = 6.9820(4) Å, V = 572.07(5) Å3. The chemical composition of the sample, determined by electron-microprobe analysis, is (in wt%, average of 10 spot analyses): SO3 0.49, P2O5 0.21, V2O5 0.04, As2O5 51.21, SiO2 0.19, CaO 39.31, MnO 0.48, SrO 0.03, PbO 5.19, Na2O 0.13, F 2.12, Cl 0.08, H2Ocalc 0.33, O (≡ F+Cl) –0.91, total 98.90. On the basis of 13 anions per formula unit, the empirical formula corresponds to (Ca4.66Pb0.16Mn0.04Na0.03)Σ4.89(As2.96S0.04Si0.02P0.02)Σ3.04O12[F0.74(OH)0.24Cl0.01]. Svabite is topologically similar to the other members of the apatite supergroup: columns of face-sharing M1 polyhedra running along c are connected through TO4 tetrahedra with channels hosting M2 cations and X anions. The crystal structure of synthetic Ca5(AsO4)3F was previously reported as triclinic. On the contrary, the present refinement of the crystal structure of svabite shows no deviations from the hexagonal symmetry. An accurate knowledge of the atomic arrangement of this apatite-remediation mineral represents an improvement in our understanding of minerals able to sequester and stabilize heavy metals such as arsenic in polluted areas.

  • 16.
    Biagioni, Cristian
    et al.
    Università di Pisa, Italy..
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Miyawaki, Ritsuro
    National Museum of Nature and Science, Tsukuba, Japan.
    Pasero, Marco
    Università di Pisa, Italy..
    Nuove specie mineralogiche Italiane2019Ingår i: Rivista Mineralogica Italiana, Vol. 43, nr 4, s. 256-262Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 17.
    Biagioni, Cristian
    et al.
    Università di Pisa, Italy..
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pasero, Marco
    Università di Pisa, Italy..
    Nuovi minerali Italiana - La approvazioni 20172018Ingår i: Revista Mineralogica Italiana, ISSN 0391-9641, Vol. 42, nr 3, s. 190-197Artikel i tidskrift (Övrig (populärvetenskap, debatt, mm))
  • 18.
    Biagioni, Cristian
    et al.
    Università di Pisa, Italy..
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pasero, Marco
    Università di Pisa, Italy..
    Karlsson, Andreas
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Bosi, Ferdinando
    Sapienza Università di Roma, Italy.
    Hydroxylhedyphane, Ca2Pb3(AsO4)3(OH), a new member of the apatite supergroup from Långban, Sweden2019Ingår i: European journal of mineralogy, ISSN 0935-1221, E-ISSN 1617-4011, Vol. 31, nr 5-6, s. 1007-1014Artikel i tidskrift (Refereegranskat)
  • 19. Bolhar, R.
    et al.
    Hofmann, A.
    Kemp, A.I.S.
    Whitehouse, Martin J.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Wind, S.
    Kamber, B.S.
    Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8-3.0 Ga detrital zircons2017Ingår i: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 215, s. 432-446Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9–2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon δ18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In εHf-time space, 3.8–3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ∼0.015) that separated from chondritic mantle at ∼3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral accretion of arc-related crustal blocks until 3.35 Ga.

  • 20. Bollard, J.
    et al.
    Connelly, J.N.
    Whitehouse, Martin J.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pringle, E.A.
    Bonal, E.A.
    Jørgensen, J.K.
    Nordlund, Å.
    Moynier, F.
    Bizzarro, M.
    Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules.2017Ingår i: Science Advances, ISSN 2375-2548, Vol. 3, artikel-id e1700407Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The most abundant components of primitive meteorites (chondrites) are millimeter-sized glassy spherical chondrules formed by transient melting events in the solar protoplanetary disk. Using Pb-Pb dates of 22 individual chondrules, we show that primary production of chondrules in the early solar system was restricted to the first million years after the formation of the Sun and that these existing chondrules were recycled for the remaining lifetime of the protoplanetary disk. This finding is consistent with a primary chondrule formation episode during the early high-mass accretion phase of the protoplanetary disk that transitions into a longer period of chondrule reworking. An abundance of chondrules at early times provides the precursor material required to drive the efficient and rapid formation of planetary objects via chondrule accretion.

  • 21.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma.
    Andreozzi, Giovanni B.
    Sapienza Università di Roma.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Zn-O tetrahedral bond length variations in normal spinel oxides2011Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 96, s. 594-598Artikel i tidskrift (Refereegranskat)
  • 22.
    Bosi, Ferdinando
    et al.
    Università di Roma, Italien.
    Andreozzi, Giovanni
    Università di Roma, Italien.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Experimental evidence for partial Fe2+ disorder at the Y and Z sites of tourmaline: a combined EMP, SREF, MS, IR and OAS study of schorl2015Ingår i: Mineralogical magazine, ISSN 0026-461X, E-ISSN 1471-8022, Vol. 79, nr 3, s. 515-528Artikel i tidskrift (Refereegranskat)
  • 23.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Christy, Andrew
    Australian National University, Canberra, Australia.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal-chemical aspects of the roméite group, A2Sb2O6Y, of the pyrochlore supergroup2017Ingår i: Mineralogical magazine, ISSN 0026-461X, E-ISSN 1471-8022, Vol. 81, nr 6, s. 1287-1302Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Four specimens of the roméite-group minerals oxyplumboroméite and fluorcalcioroméite from the Långban Mn-Fe deposit in Central Sweden were structurally and chemically characterized by single-crystal X-ray diffraction, electron microprobe analysis and infrared spectroscopy. The data obtained and those on additional roméite samples from literature show that the main structural variations within the roméite group are related to variations in the content of Pb2+, which is incorporated into the roméite structure via the substitution Pb2+ → A2+ where A2+ = Ca, Mn and Sr. Additionally, the cation occupancy at the six-fold coordinated B site, which is associated with the heterovalent substitution BFe3+ + Y□ → BSb5+ + YO2–, can strongly affect structural parameters.

    Chemical formulae of the roméite minerals group are discussed. According to crystal-chemical information, the species associated with the name ‘kenoplumboroméite’, hydroxycalcioroméite and fluorcalcioroméite most closely approximate end-member compositions Pb2(SbFe3+)O6□, Ca2(Sb5+Ti)O6(OH) and (CaNa)Sb2O6F, respectively. However, in accord with pyrochlore nomenclature rules, their names correspond to multiple end-members and are best described by the general formulae: (Pb,#)2(Sb,#)2O6□, (Ca,#)2(Sb,#)2O6(OH) and (Ca,#)Sb2(O,#)6F, where ‘#’ indicates an unspecified charge-balancing chemical substituent, including vacancies.

  • 24.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Cámara, Fernando
    Università di Torino, Italy.
    Ciriotti, Marco
    Associazione Micromineralogica Italiana, Torino, Italy.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Reznitskii, Leonid
    Russian Academy of Science, Irkutsk, Russia.
    Stagno, Vincenzo
    Sapienza Università di Roma, Italy.
    Crystal-chemical relations and classification problems in tourmalines belonging to the oxy-schorl—oxy-dravite—bosiite—povondraite series2017Ingår i: European journal of mineralogy, ISSN 0935-1221, E-ISSN 1617-4011, Vol. 29, nr 3, s. 445-455Artikel i tidskrift (Refereegranskat)
  • 25.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Hatert, Frédéric
    Université de Liège, Belgium..
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Pasero, Marco
    Università di Pisa, Italy..
    Miyawaki, Ritsuro
    National Museum of Nature and Science, Tsukuba, Japan.
    Mills, Stuart J.
    Museum Victoria, Melbourne, Australia..
    On the application of the IMA-CNMNC dominant-valency rule to complex mineral compositions2019Ingår i: Mineralogical magazine, ISSN 0026-461X, E-ISSN 1471-8022, Vol. 83, nr 5, s. 627-632Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mineral species should be identified by an end-member formula and by using the dominant-valency rule as recommended by the IMA–CNMNC. However, the dominant-end-member approach has also been used in the literature. These two approaches generally converge, but for some intermediate compositions, significant differences between the dominant-valency rule and the dominant end-member approach can be observed. As demonstrated for garnet-supergroup minerals, for example, the end-member approach is ambiguous, as end-member proportions strongly depend on the calculation sequence. For this reason, the IMA–CNMNC strongly recommends the use of the dominant-valency rule for mineral nomenclature, because it alone may lead to unambiguous mineral identification. Although the simple application of the dominant-valency rule is successful for the identification of many mineral compositions, sometimes it leads to unbalanced end-member formulae, due to the occurrence of a coupled heterovalent substitution at two sites along with a heterovalent substitution at a single site. In these cases, it may be useful to use the site-total-charge approach to identify the dominant root-charge arrangement on which to apply the dominant-constituent rule. The dominant-valency rule and the site-totalcharge approach may be considered two procedures complementary to each other for mineral identification. Their critical point is to find the most appropriate root-charge and atomic arrangements consistent with the overriding condition dictated by the end-member formula. These procedures were approved by the IMA−CNMNC in May 2019.

  • 26.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Andreozzi, Giovanni B.
    Sapienza Università di Roma.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Lucchesi, Sergio
    Sapienza Università di Roma.
    Structural refinement of Mn-doped spinel: a case for tetrahedrally coordinated Mn3+ in an oxygen-based structure2007Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 92, s. 27-33Artikel i tidskrift (Refereegranskat)
  • 27.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    D'Ippolito, Veronica
    Sapienza Università di Roma.
    Andreozzi, Giovanni B.
    Sapienza Università di Roma.
    Blue spinel crystals in the MgAl2O4-CoAl2O4 series: II. Cation ordering over short range and long range scales2012Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 97, s. 1834-1840Artikel i tidskrift (Refereegranskat)
  • 28.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal chemistry of the magnetite-ulvöspinel series2009Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 94, s. 181-189Artikel i tidskrift (Refereegranskat)
  • 29.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal chemistry of the MgAl2O4-MgMn2O4-MnMn2O4 system: Analysis of structural distortion in spinel and hausmannite-type structures2010Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 95, s. 602-607Artikel i tidskrift (Refereegranskat)
  • 30.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal chemistry of the ulvöspinel-qandilite series2014Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 99, s. 847-851Artikel i tidskrift (Refereegranskat)
  • 31.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Stoichiometry of synthetic ulvöspinel single crystals2008Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 93, s. 1312-1316Artikel i tidskrift (Refereegranskat)
  • 32.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Naitza, Stefano
    Università degli Studi di Cagliari, Italy.
    Secchi, Francesco
    Università degli Studi di Sassari, Italy.
    Conte, Aida M.
    CNR, Sede Secondaria di Roma "Sapienza", Roma, Italy.
    Cuccuru, Stefano
    Università degli Studi di Sassari, Italy.
    Andreozzi, Giovanni B.
    Sapienza Università di Roma, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Petrogenic controls on the origin of tourmalinite veins from Mandrolisai igneous massif (central Sardinia, Italy): Insights from tourmaline crystal chemistry2019Ingår i: Lithos, ISSN 0024-4937, E-ISSN 1872-6143, Vol. 342-343, s. 333-344Artikel i tidskrift (Refereegranskat)
  • 33.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Naitza, Stefano
    Università degli Studi di Cagliari, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Secchi, Francesco
    Università degli Studi di Sassari, Italy.
    Conte, Aida M.
    CNR-Istituto di Georiscienze e Georisose, Rome, Italy.
    Cuccuru, Stafano
    Università degli Studi di Sassari.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    De La Rosa, Nathaly
    Division of Nuclear Physics, Lund University.
    Kristiansson, Per
    Division of Nuclear Physics, Lund University.
    Nilsson, E.J. Charlotta
    Division of Nuclear Physics, Lund University.
    Ros, Linus
    Division of Nuclear Physics, Lund University.
    Andreozzi, Giovanni B.
    Sapienza Università di Roma, Italy.
    Late magmatic controls on the origin of schorlitic and foititic tourmalines from late-Variscan peraluminous granites of the Arbus pluton (SW Sardinia, Italy): Crystal-chemical study and petrological constraints2018Ingår i: Lithos, ISSN 0024-4937, E-ISSN 1872-6143, Vol. 308-309, s. 395-411Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Tourmalines from the late-Variscan Arbus pluton (SWSardinia) and its metamorphic aureole were structurally and chemically characterized by single-crystal X-ray diffraction, electron and nuclear microprobe analysis, Mössbauer, infrared and optical absorption spectroscopy, to elucidate their origin and relationships with the magmatic evolution during the pluton cooling stages. The Arbus pluton represents a peculiar shallow magmatic system, characterized by sekaninaite (Fe-cordierite)-bearing peraluminous granitoids, linked via AFC processes to gabbroic mantle-derived magmas. The Fe2+-Al-dominant tourmalines occur in: a) pegmatitic layers and pods, as prismatic crystals; b) greisenized rocks and spotted granophyric dikes, as clots or nests of fine-grained crystals in small miaroles locally forming orbicules; c) pegmatitic veins and pods close to the contacts within the metamorphic aureole. Structural formulae indicate that tourmaline in pegmatitic layers is schorl, whereas in greisenized rocks it ranges fromschorl to fluor-schorl. Tourmalines in thermometamorphosed contact aureole are schorl, foitite and Mg-rich oxy-schorl. The main substitution is Na+Fe2+↔▢+Al, which relates schorl to foitite. The homovalent substitution (OH)F at the O1 crystallographic site relates schorl to fluor-schorl, while the heterovalent substitution Fe2++(OH, F)Al+O relates schorl/fluor-schorl to oxy-schorl. Tourmaline crystallization in the Arbus pluton was promoted by volatile (B, F and H2O) enrichment, low oxygen fugacity and Fe2+ activity. The mineralogical evolutive trend is driven by decreasing temperature, as follows: sekaninaite+quartz →schorl+quartz→fluor-schorl+quartz → foitite+quartz. The schorl→foitite evolution represents a distinct trend towards (Al+!) increase and unit-cell volumedecrease. These trends are typical of granitic magmas and consistent with Li-poor granitic melts, as supported by the absence of elbaite and other Li-minerals in the Arbus pluton. Tourmaline-bearing rocks reflect the petrogenetic signi!cance of contribution from a metapelitic crustal component during the evolution of magmas in the middle-upper crust.

  • 34.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Reznitskii, Leonid
    Russian Academy of Science, Irkutsk, Russia.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal chemistry of Al-V-Cr oxy-tourmalines from Sludyanka complex, Lake Baikal, Russia2017Ingår i: European journal of mineralogy, ISSN 0935-1221, E-ISSN 1617-4011, Vol. 29, nr 3, s. 457-472Artikel i tidskrift (Refereegranskat)
  • 35.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Reznitskii, Leonid
    Russian Academy of Science.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Vanadio-oxy-chromium-dravite, NaV3(Cr4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup 2014Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 99, s. 1155-1162Artikel i tidskrift (Refereegranskat)
  • 36.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Reznitskii, Leonid
    Russian Academy of Science, Irkutsk.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Vanadio-oxy-dravite, NaV3(Al4Mg2)(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup2014Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 99, s. 218-224Artikel i tidskrift (Refereegranskat)
  • 37.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Fregola, Rosa Anna
    Università di Bari Aldo Moro, Italy.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Crystal chemistry of spinels in the system MgAl2O4-MgV2O4-Mg2VO42016Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 101, s. 580-586Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Eight spinel single-crystal samples belonging to the spinel sensu stricto-magnesiocoulsonite series (MgAl2O4-MgV2O4) were synthesized and crystal-chemically characterized by X‑ray diffraction, electron microprobe and optical absorption spectroscopy. Site populations show that the tetrahedrally coordinated site (T) is populated by Mg and minor Al for the spinel sensu stricto compositions, and only by Mg for the magnesiocoulsonite compositions, while the octahedrally coordinated site (M) is populated by Al, V3+, minor Mg, and very minor amounts of V4+. The latter occurs in appreciable amounts in the Al-free magnesium vanadate spinel, T(Mg)M(Mg0.26V3+1.48V4+0.26)O4, showing the presence of the inverse spinel VMg2O4. The studied samples are characterized by substitution of Al3+ for V3+ and (Mg2++V4+) for 2V3+ described in the system MgAl2O4-MgV2O4-VMg2O4.

    The present data in conjunction with data from the literature provide a basis for quantitative analyses of two solid-solution series MgAl2O4-MgV23+O4 and MgV23+O4-V4+Mg2O4. Unit-cell parameter increases with increasing V3+ along the series MgAl2O4-MgV2O4 (8.085–8.432 Å), but only slightly increases with increasing V3+ along the series VMg2O4-MgV2O4 (8.386–8.432 Å). Although a solid solution could be expected between the MgAl2O4 and VMg2O4 end-members, no evidence was found. Amounts of V4+ are nearly insignificant in all synthetic Al-bearing vanadate spinels, but are appreciable in Al-free vanadate spinel.

    An interesting observation of the present study is that despite the observed complete solid-solution along the MgAl2O4-MgV2O4 and MgV2O4-VMg2O4 series, the spinel structure seems to be unable to stabilize V4+ in any intermediate members on the MgAl2O4-Mg2VO4 join even at high oxygen fugacities. This behavior indicates that the accommodation of specific V-valences can be strongly influenced by crystal-structural constraints, and any evaluation of oxygen fugacities during mineral formation based exclusively on V cation valence distributions in spinel should be treated with caution. The present study underlines that the V valency distribution in spinels is not exclusively reflecting oxygen fugacities, but also depends on activities and solubilities of all chemical components in the crystallization environment.

  • 38.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Oxy-foitite, □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O, a new mineral species of the tourmaline supergroup2017Ingår i: European journal of mineralogy, ISSN 0935-1221, E-ISSN 1617-4011, Vol. 29, nr 5, s. 889-896Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Oxy-foitite, □(Fe2+Al2)Al6(Si6O18)(BO3)3(OH)3O, is a new mineral of the tourmaline supergroup. It occurs in high-grade migmatitic gneisses of pelitic composition at the Cooma metamorphic Complex (New South Wales, Australia), in association with muscovite, K-feldspar and quartz. Crystals are black with a vitreous luster, sub-conchoidal fracture and gray streak. Oxy-foitite has a Mohs hardness of ∼7, and has a calculated density of 3.143 g/cm3. In plane-polarized light, oxy-foitite is pleochroic (O= dark brown and E = pale brown), uniaxial negative. Oxy-foitite belongs to the trigonal crystal system, space group R3ma = 15.9387(3) Å, c = 7.1507(1)Å and V = 1573.20(6)Å3,Z = 3. The crystal structure of oxy-foitite was refined to R1 = 1.48% using 3247 unique reflections from single-crystal X-ray diffraction using MoKα radiation. Crystal-chemical analysis resulted in the empirical structural formula: X(□0.53Na0.45Ca0.01K0.01)Σ1.00Y(Al1.53Fe2+1.16Mg0.22Mn2+0.05Zn0.01Ti4+0.03)Σ3.00Z(Al5.47Fe3+0.14Mg0.39)Σ6.00[(Si5.89Al0.11)Σ6.00O18](BO3)3V(OH)3W[O0.57F0.04(OH)0.39]Σ1.00. Oxy-foitite belongs to the X-site vacant group of the tourmaline-supergroup minerals, and shows chemical relationships with foitite through the substitution YAl3++WO2-YFe2++W(OH)1–.

  • 39.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Rome, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Thermally induced cation redistribution in Fe‑bearing oxy‑dravite and potential geothermometric implications2016Ingår i: Contributions to Mineralogy and Petrology, ISSN 0010-7999, E-ISSN 1432-0967, Vol. 171, nr 5, s. 1-14, artikel-id 47Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Iron-bearing oxy-dravite was thermally treated in air and hydrogen atmosphere at 800 °C to study potential changes in Fe, Mg and Al ordering over the octahedrally coordinated Y and Z sites and to explore possible applications to intersite geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that heating Fe-bearing tourmalines results in disordering of Fe over Y and Z balanced by ordering of Mg at Y, whereas Al does not change appreciably. The Fe disorder depends on temperature, but less on redox conditions. The degree of Fe3+–Fe2+ reduction is limited despite strongly reducing conditions, indicating that the fO2 conditions do not exclusively control the Fe oxidation state at the present experimental conditions. Untreated and treated samples have similar short- and long-range crystal structures, which are explained by stable Al-extended clusters around the O1 and O3 sites. In contrast to the stable Al clusters that preclude any temperature-dependent Mg–Al order– disorder, there occurs Mg diffusion linked to temperaturedependent exchange with Fe. Ferric iron mainly resides around O2− at O1 rather than (OH), but its intersite disorder induced by thermal treatment indicates that Fe redistribution is the driving force for Mg–Fe exchange and that its diffusion rates are significant at these temperatures. With increasing temperature, Fe progressively disorders over Y and Z, whereas Mg orders at Y according to the order–disorder reaction: YFe + ZMg → ZFe + YMg. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks and imply that successful tourmaline geothermometers may be developed by thermal calibration of the Mg– Fe order–disorder reaction, whereas any thermometers based on Mg–Al disorder will be insensitive and involve large uncertainties.

  • 40.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Thermally induced cation redistribution in fluor-elbaite and Fe-bearing tourmalines2019Ingår i: Physics and chemistry of minerals, ISSN 0342-1791, E-ISSN 1432-2021, Vol. 46, nr 4, s. 371-383Artikel i tidskrift (Refereegranskat)
  • 41.
    Bosi, Ferdinando
    et al.
    Sapienza Università di Roma, Italy.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Ciriotti, Marco
    Associazione Micromineralogica Italiana,Torino, Italy.
    Experimental cation redistribution in the tourmaline lucchesiite, CaFe2+3Al6(Si6O18)(BO3)3(OH)3O2018Ingår i: Physics and chemistry of minerals, ISSN 0342-1791, E-ISSN 1432-2021, Vol. 45, nr 7, s. 621-632Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Natural Mg-rich lucchesiite was thermally treated in air and hydrogen atmosphere up to 800 °C to study potential changes in Fe-, Mg- and Al ordering over the octahedrally coordinated Y-  and Z -sites, and to explore possible applications to intracrystalline geothermometry based on tourmaline. Overall, the experimental data (structural refinement, Mössbauer, infrared and optical absorption spectroscopy) show that thermal treatment of lucchesiite results in an increase of Fetot contents at Z balanced by an increase of Mg and Al at Y . This process is accompanied by a significant deprotonation of the O3 anion site. The Fe order–disorder reaction depends more on temperature, than on redox conditions. During heat treatment in H2 ,reduction of Fe3+ to Fe2+ was not observed despite strongly reducing conditions, indicating that the fO2  conditions do not exclusively control the Fe oxidation state at the present experimental conditions. On the basis of this and previous studies, the intersite order–disorder process induced by thermal treatment indicates that Fe redistribution is an important factor for Fe–Mg–Al-exchange and is significant at temperatures around 800 °C. As a result, Fe–Mg–Al intersite order–disorder is sensitive to temperature variations, whereas geothermometers based solely on Mg–Al order–disorder appear insensitive and involve large uncertainties. The presented findings are important for interpretation of the post-crystallization history of both tourmaline and tourmaline host rocks, and indicate that successful tourmaline geothermometers may be developed by thermal calibration of the Fe-Mg–Al order–disorder reaction.

  • 42.
    Bosi, Ferdinando
    et al.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Skogby, Henrik
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Reznitskii, Leonid
    Russian Academy of Science, Irkutsk.
    Crystallographic and spectroscopic characterization of Fe-bearing chromo-alumino-povondraite and its relationships with oxy-chromium-dravite and oxy-dravite2013Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 98, s. 1557-1564Artikel i tidskrift (Refereegranskat)
  • 43. Bouvier, Laura
    et al.
    Costa, Maria
    Connelly, James
    Jensen, Ninna
    Wielandt, Daniel
    Storey, Michael
    Nemchin, Alexander
    Whitehouse, Martin
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Snape, Joshua
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Bellucci, Jeremy
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Moynier, Frederic
    Agranier, Arnaud
    Gueguen, Bleuenn
    Schonbachler, Maria
    Bizzarro, Martin
    Evidence for extremely rapid magma ocean crystallization and crust formation on Mars2018Ingår i: Nature, ISSN 1476-4687, Vol. 558, s. 586-589Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The formation of a primordial crust is a critical step in the evolution of terrestrial planets but the timing of this process is poorly understood. The mineral zircon is a powerful tool for constraining crust formation because it can be accurately dated with the uranium-to-lead (U–Pb) isotopic decay system and is resistant to subsequent alteration. Moreover, given the high concentration of hafnium in zircon, the lutetium-to-hafnium (176Lu–176Hf) isotopic decay system can be used to determine the nature and formation timescale of its source reservoir (1,2,3) Ancient igneous zircons with crystallization ages of around 4,430 million years (Myr) have been reported in Martian meteorites that are believed to represent regolith breccias from the southern highlands of Mars (4,5) These zircons are present in evolved lithologies interpreted to reflect re-melted primary Martian crust4, thereby potentially providing insight into early crustal evolution on Mars. Here, we report concomitant high-precision U–Pb ages and Hf-isotope compositions of ancient zircons from the NWA 7034 Martian regolith breccia. Seven zircons with mostly concordant U–Pb ages define 207Pb/206Pb dates ranging from 4,476.3 ± 0.9 Myr ago to 4,429.7 ± 1.0 Myr ago, including the oldest directly dated material from Mars. All zircons record unradiogenic initial Hf-isotope compositions inherited from an enriched, andesitic-like crust extracted from a primitive mantle no later than 4,547 Myr ago. Thus, a primordial crust existed on Mars by this time and survived for around 100 Myr before it was reworked, possibly by impacts (4,5) to produce magmas from which the zircons crystallized. Given that formation of a stable primordial crust is the end product of planetary differentiation, our data require that the accretion, core formation and magma ocean crystallization on Mars were completed less than 20 Myr after the formation of the Solar System. These timescales support models that suggest extremely rapid magma ocean crystallization leading to a gravitationally unstable stratified mantle, which subsequently overturns, resulting in decompression melting of rising cumulates and production of a primordial basaltic to andesitic crust (6,7).

  • 44.
    Bruschini, Enrico
    et al.
    Sapienza Università di Roma.
    Speziale, Sergio
    Geoforschungszentrum, Potsdam.
    Andreozzi, Giovanni
    Sapienza Università di Roma.
    Bosi, Ferdinando
    Sapienza Università di Roma.
    Hålenius, Ulf
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    The elasticity of MgAl2O4-MnAl2O4 spinels by Brillouin scattering and an empirical approach for bulk modulus prediction2015Ingår i: American Mineralogist, ISSN 0003-004X, E-ISSN 1945-3027, Vol. 100, s. 644-651Artikel i tidskrift (Refereegranskat)
  • 45. Budd, D.A.
    et al.
    Troll, V.R.
    Deegan, F.M.
    Jolis, E.M.
    Smith, V.C.
    Whitehouse, Martin J.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Harris, C.
    Freda, C.
    Hilton, D.R.
    Halldorsson, S.A.
    Bindemann, I.N.
    Magma reservoir dynamics at Toba caldera, Indonesia, recorded by oxygen isotope zoning in quartz2017Ingår i: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 7, artikel-id 40624Artikel i tidskrift (Refereegranskat)
    Abstract [sv]

    Quartz is a common phase in high-silica igneous rocks and is resistant to post-eruptive alteration, thus offering a reliable record of magmatic processes in silicic magma systems. Here we employ the 75 ka Toba super-eruption as a case study to show that quartz can resolve late-stage temporal changes in magmatic δ18O values. Overall, Toba quartz crystals exhibit comparatively high δ18O values, up to 10.2‰, due to magma residence within, and assimilation of, local granite basement. However, some 40% of the analysed quartz crystals display a decrease in δ18O values in outermost growth zones compared to their cores, with values as low as 6.7‰ (maximum ∆core−rim = 1.8‰). These lower values are consistent with the limited zircon record available for Toba, and the crystallisation history of Toba quartz traces an influx of a low-δ18O component into the magma reservoir just prior to eruption. Here we argue that this late-stage low-δ18O component is derived from hydrothermally-altered roof material. Our study demonstrates that quartz isotope stratigraphy can resolve magmatic events that may remain undetected by whole-rock or zircon isotope studies, and that assimilation of altered roof material may represent a viable eruption trigger in large Toba-style magmatic systems.

  • 46. Cabral, R.A.
    et al.
    Jackson, M.G.
    Koga, K.T.
    Rose-Koga, E.F.
    Hauri, E.H.
    Whitehouse, Martin J.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Price, A.A:
    Day, J.M.D.
    Shimizu, N.
    Kelley, K.A.
    Volatile cycling of H2O, CO2, F, and Cl in the HIMU mantle: A new window provided by melt inclusions from oceanic hotspot lavas at Mangaia, Cook Islands.2014Ingår i: Geochemistry, Geophysics, Geosystems, ISSN 1525-2027, Vol. 15, s. 4445-4467Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Mangaia hosts the most radiogenic Pb-isotopic compositions observed in ocean island basalts and represents the HIMU (high µ = 238U/204Pb) mantle end-member, thought to result from recycled oceanic crust. Complete geochemical characterization of the HIMU mantle end-member has been inhibited due to a lack of deep submarine glass samples from HIMU localities. We homogenized olivine-hosted melt inclusions separated from Mangaia lavas and the resulting glassy inclusions made possible the first volatile abundances to be obtained from the HIMU mantle end-member. We also report major and trace element abundances and Pb-isotopic ratios on the inclusions, which have HIMU isotopic fingerprints. We evaluate the samples for processes that could modify the volatile and trace element abundances postmantle melting, including diffusive Fe and H2O loss, degassing, and assimilation. H2O/Ce ratios vary from 119 to 245 in the most pristine Mangaia inclusions; excluding an inclusion that shows evidence for assimilation, the primary magmatic H2O/Ce ratios vary up to ∼200, and are consistent with significant dehydration of oceanic crust during subduction and long-term storage in the mantle. CO2 concentrations range up to 2346 ppm CO2 in the inclusions. Relatively high CO2 in the inclusions, combined with previous observations of carbonate blebs in other Mangaia melt inclusions, highlight the importance of CO2 for the generation of the HIMU mantle. F/Nd ratios in the inclusions (30 ± 9; 2σ standard deviation) are higher than the canonical ratio observed in oceanic lavas, and Cl/K ratios (0.079 ± 0.028) fall in the range of pristine mantle (0.02–0.08).

  • 47.
    Canfield, Donald E.
    et al.
    University of Southern Denmark.
    Ngombi Pemba, Lauriss
    Hammarlund, Emma
    Bengtson, Stefan
    Naturhistoriska riksmuseet, Enheten för paleobiologi.
    Chaussidon, Marc
    Gauthier Lafaye, François
    Meunier, Alain
    Riboulleau, Armelle
    Rollion Bard, Claire
    Rouxel, Olivier
    Asael, Dan
    Wickmann, Anne Catherine
    El Albani, Abderrazak
    Oxygen dynamics in the aftermath of the Great Oxidation of the Earth’s atmosphere.2013Ingår i: Proceedings of the National Academy of Sciences, ISSN 0027-8424, Vol. 110, nr 42, s. 16736-16741Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The oxygen content of Earth’s atmosphere has varied greatly through time, progressing from exceptionally low levels before about 2.3 billion years ago, to much higher levels afterward. In the absence of better information, we usually view the progress in Earth’s oxygenation as a series of steps followed by periods of relative stasis. In contrast to this view, and as reported here, a dynamic evolution of Earth’s oxygenation is recorded in ancient sediments from the Republic of Gabon from between about 2,150 and 2,080 million years ago. The oldest sediments in this sequence were deposited in well-oxygenated deep waters whereas the youngest were deposited in euxinic waters, which were globally extensive. These fluctuations in oxygenation were likely driven by the comings and goings of the Lomagundi carbon isotope excursion, the longest–lived positive ?13C excursion in Earth history, generating a huge oxygen source to the atmosphere. As the Lomagundi event waned, the oxygen source became a net oxygen sink as Lomagundi organic matter became oxidized, driving oxygen to low levels; this state may have persisted for 200 million years.

  • 48.
    Charette, M
    et al.
    Woods Hole Oceanographic Institution, USA.
    Lam, P.J.
    University of California Santa Cruz, USA.
    Lohan, M.C.
    University of Southhampton, UK.
    Kwon, E.Y.
    Seoul National University,Korea.
    Hatje, V
    Universidade Federal da Bahia, Brazil.
    Jeandel, C
    University of Toulouse, France.
    Shiller, A.M.
    University of Southern Mississippi, USA.
    Cutter, G.A.
    Old Dominion University, USA.
    Thomas, A
    University of Edinburgh, UK.
    Boyd, P.W.
    University of Tasmania, Australia.
    Homoky, W.B.
    University of Oxford, UK.
    Milne, A.
    Plymoth University, UK.
    Thomas, H.
    Dalhousie University, Canada.
    Andersson, P.S.
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Porcelli, D.
    University of Oxford,Uk.
    Tanaka, T
    University of Tokyo, Japan.
    Geibert, W
    Alfred Wegener Institute, Germany.
    Dehairs, F.
    Vrije Universiteit, Belgium.
    Garcia-Orellana, J.
    Universitat Autonoma de Barcelona, Spain.
    Coastal ocean and shelf-sea biogeochemical cycling of trace elements and isotopes: lessons learned from GEOTRACES2016Ingår i: Philosopical Transactions of the Royal Society A, ISSN 1364–503X, Vol. 374, nr 2081Artikel, forskningsöversikt (Refereegranskat)
    Abstract [en]

    Continental shelves and shelf seas play a central role in the global carbon cycle. However,

    their importance with respect to trace element and isotope (TEI) inputs to ocean basins

    is less well understood. Here, we present major findings on shelf TEI biogeochemistry

    from the GEOTRACES programme as well as a proof of concept for a new method to

    estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI

    cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment

    micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The

    proposed shelf flux tracer is 228-radium (T1/2 =5.75 yr), which is continuously supplied to

    the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf

    228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the

    western North Atlantic margin. The results from this new approach agree well with previous

    estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric

    deposition by factors of approximately 3–23. Lastly, recommendations are made for additional

    GEOTRACES process studies and coastal margin-focused section cruises that will help refine

    the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes

    to the ocean.

    This article is part of the themed issue ‘Biological and climatic impacts of ocean trace element

    chemistry’.

  • 49. Chi Fru, Ernest
    et al.
    Ivarsson, Magnus
    Naturhistoriska riksmuseet, Enheten för paleobiologi.
    Kilias, Stephanos P
    Bengtson, Stefan
    Naturhistoriska riksmuseet, Enheten för paleobiologi.
    Belivanova, Veneta
    Naturhistoriska riksmuseet, Enheten för paleobiologi.
    Marone, Federica
    Paul Scherrer Institute.
    Fortin, Danielle
    Broman, Curt
    Stampanoni, Marco
    ETH Zürich.
    Fossilized iron bacteria reveal pathway to biological origin of banded iron formation.2013Ingår i: Nature Communications, ISSN 2041-1723, Vol. 4, nr 2050, s. 1-7Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.

  • 50.
    Chi Fru, Ernest
    et al.
    Stockholm University, Department of Geological Sciences.
    Rodríguez, Nathalie
    Stockholm University Department of Geological Sciences.
    Partin, Camille
    University of Saskatchewan, Canada.
    Lalonde, Stefan
    Université de Bretagne Occidentale, France.
    Andersson, Per
    Naturhistoriska riksmuseet, Enheten för geovetenskap.
    Weiss, Dominik
    Imperial College, London, UK.
    El Albani, Abderrazak
    Université de Poitiers, France.
    Rodushkin, Ilia
    ALS Scandinavia, Sweden.
    Konhauser, Kurt
    University of Alberta, Canada.
    Cu isotopes in marine black shales record the Great Oxidation Event2016Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 113, nr 18, s. 4941-4946Artikel i tidskrift (Refereegranskat)
    Abstract [en]

    The oxygenation of the atmosphere ∼2.45–2.32 billion years ago (Ga) is one of the most significant geological events to have affected Earth’s redox history. Our understanding of the timing and processes surrounding this key transition is largely dependent on the development of redox-sensitive proxies, many of which remain unexplored. Here we report a shift from negative to positive copper isotopic compositions (δ65CuERM-AE633) in organic carbon-rich shales spanning the period 2.66–2.08 Ga. We suggest that, before 2.3 Ga, a muted oxidative supply of weathering-derived copper enriched in 65Cu, along with the preferential removal of 65Cu by iron oxides, left seawater and marine biomass depleted in 65Cu but enriched in 63Cu. As banded iron formation deposition waned and continentally sourced Cu became more important, biomass sampled a dissolved Cu reservoir that was progressively less fractionated relative to the continental pool. This evolution toward heavy δ65Cu values coincides with a shift to negative sedimentary δ56Fe values and increased marine sulfate after the Great Oxidation Event (GOE), and is traceable through Phanerozoic shales to modern marine settings, where marine dissolved and sedimentary δ65Cu values are universally positive. Our finding of an important shift in sedimentary Cu isotope compositions across the GOE provides new insights into the Precambrian marine cycling of this critical micronutrient, and demonstrates the proxy potential for sedimentary Cu isotope compositions in the study of biogeochemical cycles and oceanic redox balance in the past.

12345 1 - 50 av 244
RefereraExporteraLänk till träfflistan
Permanent länk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf