Change search
Refine search result
1234567 1 - 50 of 1050
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Adam, B.
    et al.
    Klawonn, I.
    Svedén, J.
    Bergkvist, J.
    Nahar, N.
    Walve, J.
    Littmann, S.
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Lavik, G.
    Kuypers, M.M.M.
    Ploug, H.
    N2-fixation, ammonium release, and N-transfer to the microbial and classical food web within a plankton community.2016In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 19, p. 450-459Article in journal (Refereed)
    Abstract [en]

    We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with 15N2, Aphanizomenon spp. showed a strong 15N-enrichment implying substantial 15N2-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of 15NH4+ from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4+ fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nm) as compared with N2-fixation within colonies. No N2-fixation was detected in autotrophic microorganisms <5 μm, which relied on NH4+ uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N2 as NH4+. However, NH4+ did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of ~5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N2 as NH4+, which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought.

  • 2. Agustí, J.
    et al.
    Werdelin, LarsSwedish Museum of Natural History, Department of Paleobiology.
    Influence of climate on faunal evolution in the Quaternary of Europe1995Collection (editor) (Refereed)
  • 3. Ahti, Teuvo
    et al.
    Mayrhofer, Helmut
    Schultz, Matthias
    Tehler, Anders
    Fryday, Alan M
    First supplement to the lichen checklist of South Africa2016In: Bothalia, African Biodiversity & Conservation Journal, Vol. 46, no 1Article in journal (Refereed)
  • 4. Alerstam, Thomas
    et al.
    Rosén, Mikael
    Bäckman, Johan
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Hellgren, Olof
    Flight speeds among bird species: allometric and phylogenetic effects.2007In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 5, no 8, p. e197-Article in journal (Refereed)
    Abstract [en]

    Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)(1/6) and (wing loading)(1/2) among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01-10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading.

  • 5. Aliabadian, Mansour
    et al.
    Kaboli, Mohammad
    Foerschler, Marc I.
    Nijman, Vincent
    Chamani, Atefeh
    Tillier, Annie
    Prodon, Roger
    Pasquet, Eric
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Zuccon, Dario
    Erratum to: Convergent evolution of morphological and ecological traits in the open-habitat chat complex (Aves, Muscicapidae: Saxicolinae) (vol 65, pg 35, 2012)2012In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 65, no 3, p. 1017-1019Article in journal (Refereed)
  • 6. Aliabadian, Mansour
    et al.
    Kaboli, Mohammad
    Förschler, Marc I
    Nijman, Vincent
    Chamani, Atefeh
    Tillier, Annie
    Prodon, Roger
    Pasquet, Eric
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Zuccon, Dario
    Convergent evolution of morphological and ecological traits in the open-habitat chat complex (Aves, Muscicapidae: Saxicolinae).2012In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 65, no 1, p. 35-45Article in journal (Refereed)
    Abstract [en]

    Open-habitat chats (genera Myrmecocichla, Cercomela, Oenanthe and relative) are a morphologically and ecologically cohesive group of genera with unclear phylogenetic relationships. They are distributed mostly in open, arid and/or rocky habitats of Africa and Eurasia. Here, we present the most comprehensive molecular phylogenetic analysis of this group to date, with a complete taxon sampling at the species level. The analysis, based on a multilocus dataset including three mitochondrial and three nuclear loci, allows us to elucidate the phylogenetic relationships and test the traditional generic limits. All genera are non-monophyletic, suggesting extensive convergence on similar plumage patterns in unrelated species. While the colour pattern appear to be a poor predictor of the phylogenetic relationships, some of the ecological and behavioural traits agree relatively well with the major clades. Following our results, we also propose a revised generic classification for the whole group.

  • 7. Alonso, Marta
    et al.
    Jiménez, Juan A.
    Nylinder, Stephan
    Hedenäs, Lars
    Swedish Museum of Natural History, Department of Botany.
    Cano, Maria J.
    Disentangling generic limits in Chionoloma, Oxystegus, Pachyneuropsis and Pseudosymblepharis (Bryophyta: Pottiaceae): An inquiry into their phylogenetic relationships2016In: Taxon, ISSN 0040-0262, E-ISSN 1996-8175, Vol. 65, p. 3-18Article in journal (Refereed)
  • 8. Alstrom, Per
    et al.
    Olsson, Urban
    Rasmussen, Pamela C.
    Yao, Cheng-Te
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Sundberg, Per
    Morphological, vocal and genetic divergence in the Cettia acanthizoides complex (Aves: Cettiidae)2007In: Zoological Journal of the Linnean Society, ISSN 0024-4082, E-ISSN 1096-3642, Vol. 149, no 3, p. 437-452Article in journal (Refereed)
  • 9. Alström, Per
    et al.
    Cibois, Alice
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Zuccon, Dario
    Gelang, Magnus
    Fjeldså, Jon
    Andersen, Michael J.
    Moyle, Robert G.
    Pasquet, Eric
    Olsson, Urban
    Comprehensive molecular phylogeny of the grassbirds and allies (Locustellidae) reveals extensive non-monophyly of traditional genera, and a proposal for a new classification2018In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 127, p. 367-375Article in journal (Refereed)
    Abstract [en]

    The widespread Old World avian family Locustellidae (‘grassbirds and allies’) comprises 62 extant species in 11 genera. In the present study, we used one mitochondrial and, for most species, four nuclear loci to infer the phylogeny of this family. We analysed 59 species, including the five previously unsampled genera plus two genera that had not before been analysed in a densely sampled dataset. This study revealed extensive disagreement with current taxonomy; the genera Bradypterus, Locustella, Megalurus, Megalurulus and Schoenicola were all found to be non-monophyletic. Non-monophyly was particularly pronounced for Megalurus, which was widely scattered across the tree. Three of the five monotypic genera (Amphilais, Buettikoferella and Malia) were nested within other genera; one monotypic genus (Chaetornis) formed a clade with one of the two species of Schoenicola; whereas the position of the fifth monotypic genus (Elaphrornis) was unresolved. Robsonius was confirmed as sister to the other genera. We propose a phylogenetically informed revision of genus-level taxonomy, including one new generic name. Finally, we highlight several non-monophyletic species complexes and deep intra-species divergences that point to conflict in taxonomy and suggest an underestimation of current species diversity in this group.

  • 10. Alström, Per
    et al.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Olsson, Urban
    Sundberg, Per
    Phylogeny and classification of the avian superfamily Sylvioidea.2006In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 38, no 2, p. 381-97Article in journal (Refereed)
    Abstract [en]

    Sylvioidea is one of the three superfamilies recognized within the largest avian radiation, the parvorder Passerida. In the present study, which is the first taxon-dense analysis of the Sylvioidea based on sequence data (nuclear myoglobin intron II and mitochondrial cytochrome b gene), we investigate the interrelationships among the four "sylvioid" clades found by previous workers, as well as the relationships within the largest of these clades. The nuclear and mitochondrial loci estimate basically the same phylogeny, with minor differences in resolution. The trees based on myoglobin and the combined data identify a strongly supported clade that includes the taxa previously allocated to Sylvioidea, except for Sitta (nuthatches), Certhia (treecreepers), Parus (tits), Remiz (penduline tits), Troglodytes and Campylorhynchus (wrens), Polioptila (gnatcatchers), and Regulus (crests/kinglets); this clade also comprises larks, which have previously been placed in the superfamily Passeroidea. We refer to this clade as Sylvioidea. This clade is further divided into 10 main, well-supported clades, which we suggest form the basis for a revised classification.

  • 11. Alström, Per
    et al.
    Fregin, Silke
    Norman, Janette A
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Christidis, Les
    Olsson, Urban
    Multilocus analysis of a taxonomically densely sampled dataset reveal extensive non-monophyly in the avian family Locustellidae.2011In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 58, no 3, p. 513-26Article in journal (Refereed)
    Abstract [en]

    The phylogeny of most of the species in the avian passerine family Locustellidae is inferred using a Bayesian species tree approach (Bayesian Estimation of Species Trees, BEST), as well as a traditional Bayesian gene tree method (MrBayes), based on a dataset comprising one mitochondrial and four nuclear loci. The trees inferred by the different methods agree fairly well in topology, although in a few cases there are marked differences. Some of these discrepancies might be due to convergence problems for BEST (despite up to 1×10(9) iterations). The phylogeny strongly disagrees with the current taxonomy at the generic level, and we propose a revised classification that recognizes four instead of seven genera. These results emphasize the well known but still often neglected problem of basing classifications on non-cladistic evaluations of morphological characters. An analysis of an extended mitochondrial dataset with multiple individuals from most species, including many subspecies, suggest that several taxa presently treated as subspecies or as monotypic species as well as a few taxa recognized as separate species are in need of further taxonomic work.

  • 12. Alström, Per
    et al.
    Höhna, Sebastian
    Gelang, Magnus
    Swedish Museum of Natural History, Department of Zoology.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Olsson, Urban
    Non-monophyly and intricate morphological evolution within the avian family Cettiidae revealed by multilocus analysis of a taxonomically densely sampled dataset.2011In: BMC evolutionary biology, ISSN 1471-2148, Vol. 11, p. 352-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The avian family Cettiidae, including the genera Cettia, Urosphena, Tesia, Abroscopus and Tickellia and Orthotomus cucullatus, has recently been proposed based on analysis of a small number of loci and species. The close relationship of most of these taxa was unexpected, and called for a comprehensive study based on multiple loci and dense taxon sampling. In the present study, we infer the relationships of all except one of the species in this family using one mitochondrial and three nuclear loci. We use traditional gene tree methods (Bayesian inference, maximum likelihood bootstrapping, parsimony bootstrapping), as well as a recently developed Bayesian species tree approach (*BEAST) that accounts for lineage sorting processes that might produce discordance between gene trees. We also analyse mitochondrial DNA for a larger sample, comprising multiple individuals and a large number of subspecies of polytypic species.

    RESULTS: There are many topological incongruences among the single-locus trees, although none of these is strongly supported. The multi-locus tree inferred using concatenated sequences and the species tree agree well with each other, and are overall well resolved and well supported by the data. The main discrepancy between these trees concerns the most basal split. Both methods infer the genus Cettia to be highly non-monophyletic, as it is scattered across the entire family tree. Deep intraspecific divergences are revealed, and one or two species and one subspecies are inferred to be non-monophyletic (differences between methods).

    CONCLUSIONS: The molecular phylogeny presented here is strongly inconsistent with the traditional, morphology-based classification. The remarkably high degree of non-monophyly in the genus Cettia is likely to be one of the most extraordinary examples of misconceived relationships in an avian genus. The phylogeny suggests instances of parallel evolution, as well as highly unequal rates of morphological divergence in different lineages. This complex morphological evolution apparently misled earlier taxonomists. These results underscore the well-known but still often neglected problem of basing classifications on overall morphological similarity. Based on the molecular data, a revised taxonomy is proposed. Although the traditional and species tree methods inferred much the same tree in the present study, the assumption by species tree methods that all species are monophyletic is a limitation in these methods, as some currently recognized species might have more complex histories.

  • 13. Alström, Per
    et al.
    Jønsson, Knud A.
    Fjeldså, Jon
    Ödeen, Anders
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Dramatic niche shifts and morphological change in two insular bird species2015In: Royal Society Open Science, ISSN 2054-5703, Vol. 2, article id 140364Article in journal (Refereed)
    Abstract [en]

    Colonizations of islands are often associated with rapid morphological divergence. We present two previously unrecognized cases of dramatic morphological change and niche shifts in connection with colonization of tropical forest-covered islands. These evolutionary changes have concealed the fact that the passerine birds madanga, Madanga ruficollis, from Buru, Indonesia, and São Tomé shorttail, Amaurocichla bocagii, from São Tomé, Gulf of Guinea, are forest-adapted members of the family Motacillidae (pipits and wagtails). We show that Madanga has diverged mainly in plumage, which may be the result of selection for improved camouflage in its new arboreal niche, while selection pressures for other morphological changes have probably been weak owing to preadaptations for the novel niche. By contrast, we suggest that Amaurocichla's niche change has led to divergence in both structure and plumage.

  • 14. Alström, Per
    et al.
    Zhang, R
    Zhao, M
    Wang, J
    Zhu, X
    Gwee, C.H.
    Hao, Y
    Ohlson, Jan I
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Jia, C
    Prawiradilaga, D M
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Lei, Fumin
    Olsson, Urban
    Complete species-level phylogeny of the leaf warbler (Aves: Phylloscopidae) radiation2018In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 126, p. 141-152Article in journal (Refereed)
  • 15. Alvarez, Belinda
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Clymans, Wim
    Fontorbe, Guillaume
    Conley, Daniel
    Assessing the Potential of Sponges (Porifera) as Indicators of Ocean Dissolved Si Concentrations2017In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 4, no 373Article in journal (Refereed)
    Abstract [en]

    We explore the distribution of sponges along dissolved silica (dSi) concentration gradients to test whether sponge assemblages are related to dSi and to assess the validity of fossil sponges as a palaeoecological tool for inferring dSi concentrations of the past oceans. We extracted sponge records from the publically available Global Biodiversity Information Facility (GBIF) database and linked these records with ocean physiochemical data to evaluate if there is any correspondence between dSi concentrations of the waters sponges inhabit and their distribution. Over 320,000 records of Porifera were available, of which 62,360 met strict quality control criteria. Our analyses was limited to the taxonomic levels of family, order and class. Because dSi concentration is correlated with depth in the modern ocean, we also explored sponge taxa distributions as a function of depth. We observe that while some sponge taxa appear to have dSi preferences (e.g., class Hexactinellida occurs mostly at high dSi), the overall distribution of sponge orders and families along dSi gradients is not sufficiently differentiated to unambiguously relate dSi concentrations to sponge taxa assemblages. We also observe that sponge taxa tend to be similarly distributed along a depth gradient. In other words, both dSi and/or another variable that depth is a surrogate for, may play a role in controlling sponge spatial distribution and the challenge is to distinguish between the two. We conclude that inferences about palaeo-dSi concentrations drawn from the abundance of sponges in the stratigraphic records must be treated cautiously as these animals are adapted to a great range of dSi conditions and likely other underlying variables that are related to depth. Our analysis provides a quantification of the dSi ranges of common sponge taxa, expands on previous knowledge related to their bathymetry preferences and suggest that sponge taxa assemblages are not related to particular dSi conditions. 

  • 16. Alves-Araújo, Anderson
    et al.
    Swenson, Ulf
    Swedish Museum of Natural History, Department of Botany.
    Alves, Marccus
    A taxonomic survey of Pouteria (Sapotaceae) from the northern portion of the Atlantic rainforest of Brazil2014In: Systematic Botany, ISSN 0363-6445, E-ISSN 1548-2324, Vol. 39, no 3, p. 915-938Article in journal (Refereed)
  • 17.
    Anderberg, Arne Alfred
    Swedish Museum of Natural History, Department of Botany.
    Proposal to conserve the name Adelostigma (Asteraceae: Inuleae)with a conserved type2015In: Taxon, ISSN 0040-0262, E-ISSN 1996-8175, Vol. 64, no 2, p. 387-388Article in journal (Refereed)
  • 18. Andersson, Ki
    et al.
    Norman, David
    Werdelin, Lars
    Swedish Museum of Natural History, Department of Paleobiology.
    Sabertoothed carnivores and the killing of large prey2011In: PLoS ONE, ISSN 1932-6203, E-ISSN 1932-6203, Vol. 6, no 10, p. e24971-Article in journal (Refereed)
    Abstract [en]

    Sabre-like canines clearly have the potential to inflict grievous wounds leading to massive blood loss and rapid death. Hypotheses concerning sabretooth killing modes include attack to soft parts such as the belly or throat, where biting deep is essential to generate strikes reaching major blood vessels. Sabretoothed carnivorans are widely interpreted as hunters of larger and more powerful prey than that of their present-day nonsabretoothed relatives. However, the precise functional advantage of the sabretooth bite, particularly in relation to prey size, is unknown. Here, we present a new point-to-point bite model and show that, for sabretooths, depth of the killing bite decreases dramatically with increasing prey size. The extended gape of sabretooths only results in considerable increase in bite depth when biting into prey with a radius of less than ~10 cm. For sabretooths, this size-reversed functional advantage suggests predation on species within a similar size range to those attacked by present-day carnivorans, rather than “megaherbivores” as previously believed. The development of the sabretooth condition appears to represent a shift in function and killing behaviour, rather than one in predator-prey relations. Furthermore, our results demonstrate how sabretoothed carnivorans are likely to have evolved along a functionally continuous trajectory: beginning as an extension of a jaw-powered killing bite, as adopted by present-day pantherine cats, followed by neck-powered biting and thereafter shifting to neck-powered shear-biting. We anticipate this new insight to be a starting point for detailed study of the evolution of pathways that encompass extreme specialisation, for example, understanding how neck-powered biting shifts into shear-biting and its significance for predator-prey interactions. We also expect that our model for point-to-point biting and bite depth estimations will yield new insights into the behaviours of a broad range of extinct predators including therocephalians (gorgonopsian + cynodont, sabretoothed mammal-like reptiles), sauropterygians (marine reptiles) and theropod dinosaurs.

  • 19. Andersson, Ki
    et al.
    Werdelin, Lars
    Swedish Museum of Natural History, Department of Paleobiology.
    Carnivora from the Late Miocene of Lantian, China2005In: Vertebrata PalAsiatica, Vol. 43, p. 256-271Article in journal (Refereed)
    Abstract [en]

    Sediments of the Bahe and Lantian formations, Lantian area, Shaanxi Province, China, have produced a large number of mammalian fossils. This Late Miocene sequence provides evidence for a period of major changes in the physical environment of the region. The carnivoran fossils are described and analyzed herein. The following species are present: lctitherium viverrinum, Hyaenictitherium cf . H. wongii and Adcrocuta eximia ( Hyaenidae) , cf. Metailurus major and cf. Metailurus parvulus ( Felidae) . Although a difference in the composition of the carnivoran fauna is noted towards the boundary between the Bahe Formation (lower) and Lantian Formation (upper), the cause of this is yet to be determined.

  • 20. Angerbjorn, Anders
    et al.
    Eide, Nina E.
    Dalen, Love
    Elmhagen, Bodil
    Hellstrom, Peter
    Ims, Rolf A.
    Killengreen, Siw
    Landa, Arild
    Meijer, Tomas
    Mela, Matti
    Niemimaa, Jukka
    Noren, Karin
    Tannerfeldt, Magnus
    Yoccoz, Nigel G.
    Henttonen, Heikki
    Carnivore conservation in practice: replicated management actions on a large spatial scale2013In: Journal of Applied Ecology, ISSN 0021-8901, E-ISSN 1365-2664, Vol. 50, no 1, p. 59-67Article in journal (Refereed)
  • 21. Arcadia, Linda in
    et al.
    Knudsen, Kerry
    Czech University of Life Sciences.
    Westberg, Martin
    Swedish Museum of Natural History, Department of Botany.
    (2341) Proposal to conserve the name Lichen fuscatus Scgrad. (Acarospora fuscata) against L. fuscatus Lam. with a conserved type (lichenised Ascomycota: Acarosporaceae)2015In: Taxon, ISSN 0040-0262, E-ISSN 1996-8175, Vol. 64, no 1, p. 168-169Article in journal (Refereed)
  • 22.
    Arcalís-Planas, Anna
    et al.
    Department of Biology, Universitat de Barcelona.
    Sveegaard, Signe
    Department of Bioscience, Aarhus University.
    Karlsson, Olle
    Swedish Museum of Natural History, Department of.
    Harding, Karin C.
    Department of Biological and Environmental Sciences, University of Gothenburg.
    Wåhlin, Anna
    Department of Earth Sciences, University of Gothenburg.
    Härkönen, Tero
    Swedish Museum of Natural History, Department of.
    Teilmann, Jonas
    Department of Bioscience, Aarhus University.
    Limited use of sea ice by the Ross seal (Ommatophoca rossii), in Amundsen Sea, Antarctica, using telemetry and remote sensing data2015In: Polar Biology, ISSN 0722-4060, E-ISSN 1432-2056Article in journal (Refereed)
  • 23. Ariyawansa, H.A
    et al.
    Hyde, K.D.
    Wedin, Mats
    Swedish Museum of Natural History, Department of Botany.
    Westberg, Martin
    Swedish Museum of Natural History, Department of Botany.
    Erratum to: Fungal Diversity Notes 111–252 - taxonomic and phylogenetic contributions to fungal taxa.2015In: Fungal diversity, ISSN 1560-2745, E-ISSN 1878-9129, Vol. 75, p. 275-277Article in journal (Refereed)
  • 24. Ariyawansa, H.A.
    et al.
    Hyde, K.D.
    Wedin, Mats
    Swedish Museum of Natural History, Department of Botany.
    Westberg, Martin
    Swedish Museum of Natural History, Department of Botany.
    Fungal Diversity Notes 111–252 - taxonomic and phylogenetic contributions to fungal taxa2015In: Fungal diversity, ISSN 1560-2745, E-ISSN 1878-9129, Vol. 75, p. 27-274Article in journal (Refereed)
  • 25. Armstrong, Kate E.
    et al.
    Stone, G. H.
    Nicholls, J. A.
    Valderama, E.
    Anderberg, Arne A.
    Swedish Museum of Natural History, Department of Botany.
    Smedmark, Jenny
    Gautier, L.
    Naciri, Y
    Milne, R.
    Richardson, James E.
    Patterns of diversification amongst tropical regions compared: a case study in Sapotaceae.2014In: Frontiers in Genetics, ISSN 1664-8021, E-ISSN 1664-8021, Vol. 5, no 362Article in journal (Refereed)
    Abstract [en]

    Species diversity is unequally distributed across the globe,with the greatest concentration occurring in the tropics. Even within the tropics, there are significant differences in the numbers of taxa found in each continental region. Manilkara is a pantropical genus of trees in the Sapotaceae comprising c.78 species. Its distribution allows for biogeographic investigation and testing of whether rates of diversification differ amongst tropical regions. The age and geographical origin of Manilkara are inferred to determine whether Gondwanan break-up, boreotropical migration or long distance dispersal have shaped its current disjunct distribution. Diversification rates through time are also analyzed to determine whether the timing and tempo of speciation on each continent coincides with geoclimatic events. Bayesian analyses of nuclear (ITS) and plastid (rpl32-trnL,rps16-trnK,and trnS-trnFM) sequences were used to reconstruct a species level phylogeny of Manilkara and related genera in the tribe Mimusopeae. Analyses of the nuclear data using a fossil-calibrated relaxed molecular clock indicate that Manilkara evolved 32–29 million years ago (Mya) in Africa. Lineages within the genus dispersed to the Neotropics 26–18 Mya and to Asia 28–15 Mya. Higher speciation rates are found in the Neotropical Manilkara clade than in either African or Asian clades. Dating of regional diversification correlates with known palaeoclimatic events. In South America, the divergence between Atlantic coastal forest and Amazonian clades coincides with the formation of drier Cerrado and Caatinga habitats between them. In Africa diversification coincides with Tertiary cycles of aridification an duplif tof the east African plateaux. In South east Asia dispersal may have been limited by the relatively recent emergence of land in New Guinea and islands further east c.10 Mya.

  • 26.
    Atherton, Sarah
    et al.
    Swedish Museum of Natural History, Department of Zoology.
    Jondelius, Ulf
    Swedish Museum of Natural History, Department of Zoology.
    Microstomum (Platyhelminthes, Macrostomorpha, Microstomidae) from the Swedish west coast: two new species and a population description2018In: European Journal of Taxonomy, ISSN 2118-9773, no 398, p. 1-18Article in journal (Refereed)
  • 27.
    Atherton, Sarah
    et al.
    Swedish Museum of Natural History, Department of Zoology.
    Jondelius, Ulf
    Swedish Museum of Natural History, Department of Zoology.
    Wide distributions and cryptic diversity within a Microstomum (Platyhelminthes) species complex2018In: Zoologica Scripta, ISSN 0300-3256, E-ISSN 1463-6409, Vol. 47, p. 486-498Article in journal (Refereed)
    Abstract [en]

    Microstomum lineare is a common species of fresh and brackish waters found world-wide. Three genes (18S, CO1 and ITS) were sequenced from specimens of M. lineare collected from four countries, and the levels of cryptic diversity and genetic structuring were assessed. Results showed M. lineare has very wide haplotype distributions suggesting higher than expected dispersal capabilities. In addition, three new species were described on the basis of molecular taxonomy: Microstomum artoisi sp. nov., Microstomum tchaikovskyi sp. nov. and Microstomum zicklerorum sp. nov.

  • 28. Autenrieth, Marijke
    et al.
    Hartmann, Stefanie
    Lah, Ljerka
    Roos, Anna
    Swedish Museum of Natural History, Department of Environmental research and monitoring.
    Dennis, Alice B.
    Tiedemann, Ralph
    High‐quality whole‐genome sequence of an abundant Holarctic odontocete, the harbour porpoise (Phocoena phocoena)2018In: Molecular Ecology Resources, ISSN 1755-098X, E-ISSN 1755-0998, Vol. 18, no 1, p. 1469-1481Article in journal (Refereed)
    Abstract [en]

    The harbour porpoise (Phocoena phocoena) is a highly mobile cetacean found across the Northern hemisphere. It occurs in coastal waters and inhabits basins that vary broadly in salinity, temperature and food availability. These diverse habitats could drive subtle differentiation among populations, but examination of this would be best conducted with a robust reference genome. Here, we report the first harbour porpoise genome, assembled de novo from an individual originating in the Kattegat Sea (Sweden). The genome is one of the most complete cetacean genomes currently available, with a total size of 2.39 Gb and 50% of the total length found in just 34 scaffolds. Using 122 of the longest scaffolds, we were able to show high levels of synteny with the genome of the domestic cattle (Bos taurus). Our draft annotation comprises 22,154 predicted genes, which we further annotated through matches to the NCBI nucleotide database, GO categorization and motif prediction. Within the predicted genes, we have confirmed the presence of >20 genes or gene families that have been associated with adaptive evolution in other cetaceans. Overall, this genome assembly and draft annotation represent a crucial addition to the genomic resources currently available for the study of porpoises and Phocoenidae evolution, phylogeny and conservation.

  • 29.
    Balke, Michael
    et al.
    Zoologische Staatssammlung München.
    Bergsten, Johannes
    Swedish Museum of Natural History, Department of Zoology.
    Hendrich, Lars
    Zoologische Staatssammlung München.
    A new genus and two new species of Southeast Asian Bidessini as well as new synonyms for Oceanian species (Coleoptera, Dytiscidae)2017In: ZooKeys, ISSN 1313-2989, E-ISSN 1313-2970, Vol. 647, p. 137-151Article in journal (Refereed)
    Abstract [en]

    Rompindessus jenisi Balke, Bergsten & Hendrich, gen. n. et sp. n. is described from near Rompin village in West Malaysia. The new genus is characterized by the presence of an occipital line and basal pronotal striae, the presence of a thick anterior bead on clypeus and two-segmented parameres as well as by the absence of basal elytral striae, the absence of sutural line on elytron, the absence of basal epipleural transverse carina, and the absence of longitudinal elytral carina. Moreover, male pro- and mesotarsus appear stout, and distinctly dilated laterally; the pronotum is comparably long and parallel-sided and the colour of beetle conspicuous dark orange. Leiodytes kualalipis Balke, Wang, Bergsten & Hendrich, sp. n. is described from West Malaysia (Pahang) and South Vietnam (Cat Tien). It is well characterized by its large size, elongate body and the form of the median lobe. Limbodessus fijiensis (J. Balfour-Browne, 1944), comb. n. described from Fiji is a new synonym of Limbodessus curviplicatus (Zimmermann, 1927) described from Samoa.

  • 30. Baloch, Elisabeth
    et al.
    Gilenstam, Gunnar
    Wedin, Mats
    Swedish Museum of Natural History, Department of Botany.
    The relationships of Odontotrema (Odontotremataceae) and the resurrected Sphaeropezia (Stictidaceae) - new combinations and three new Sphaeropezia species.2013In: Mycologia, ISSN 0027-5514, E-ISSN 1557-2536, Vol. 105, no 2, p. 384-397Article in journal (Refereed)
  • 31. Baloch, Elisabeth
    et al.
    Lumbsch, H. Thorsten
    Lücking, Robert
    Wedin, Mats
    Swedish Museum of Natural History, Department of Botany.
    New combinations and names in Gyalecta for former Belonia and Pachyphiale (Ascomycota, Ostropales) species2013In: The Lichenologist, ISSN 0024-2829, E-ISSN 1096-1135, Vol. 45, no 6, p. 723-727Article in journal (Refereed)
  • 32.
    Barani-Beiranvand, Hossein
    et al.
    Ferdowsi Univ Mashhad, Dept Biol, Fac Sci, Khorasan E Razavi, Mashhad, Iran..
    Aliabadian, Mansour
    Ferdowsi Univ Mashhad, Dept Biol, Fac Sci, Khorasan E Razavi, Mashhad, Iran.;Ferdowsi Univ Mashhad, Inst Appl Zool, RDZI, Mashhad, Iran..
    Irestedt, Martin
    Swedish Museum Nat Hist, Dept Bioinformat & Genet, Stockholm, Sweden..
    Qu, Yanhua
    Chinese Acad Sci, Inst Zool, Beijing, Peoples R China..
    Darvish, Jamshid
    Ferdowsi Univ Mashhad, Dept Biol, Fac Sci, Khorasan E Razavi, Mashhad, Iran.;Ferdowsi Univ Mashhad, Inst Appl Zool, Res Dept Rodentol, Mashhad, Iran..
    Szekely, Tamas
    Univ Bath, Dept Biol & Biochem, Bath, Avon, England..
    van Dijk, Rene E.
    Univ Sheffield, Dept Anim & Plant Sci, Sheffield, S Yorkshire, England..
    Ericson, Per G. P.
    Swedish Museum Nat Hist, Dept Zool, Stockholm, Sweden..
    Phylogeny of penduline tits inferred from mitochondrial and microsatellite genotyping2017In: Journal of Avian Biology, ISSN 0908-8857, E-ISSN 1600-048X, Vol. 48, no 7, p. 932-940Article in journal (Refereed)
    Abstract [en]

    Penduline tits (Remiz spp.) are renowned for their diverse mating and parenting strategies, and are a well-studied system by behavioural ecologists. However, the phylogenetic relationships and species delimitations within this genus are poorly understood. Here, we investigate phylogenetic relationships within the genus Remiz by examining the genetic variation in the mitochondrial cytochrome-b gene of 64 individuals and in ten autosomal microsatellite markers from 44 individuals. The taxon sampling includes individuals from all currently recognized species (R. pendulinus, R. macronyx, R. coronatus, and R. consobrinus) and most subspecies in the Palearctic region. We showed that R. coronatus and R. consobrinus are genetically well differentiated and constitute independent evolutionary lineages, separated from each other and from R. pendulinus/macronyx. However, we found no evidence for significant differentiation among R. pendulinus/macronyx individuals in mtDNA haplotypes and only marginal differences between R. pendulinus and R. macronyx in microsatellite markers. Hence, based on present data our recommendation is to treat R. pendulinus and R. macronyx as conspecific and R. coronatus and R. consobrinus as separate species.

  • 33.
    Barboutis, Christos
    et al.
    Natural History Museum of Crete, University of Crete, Iraklion, Greece.
    Henshaw, Ian
    Department of Zoology, Stockholm University.
    Kullberg, Cecilia
    Department of Zoology, Stockholm University.
    Nikolopoulou, Stamatina
    Institute of Marine Biology and Genetics, Hellenic Centre for Marine Research, Iraklion, Crete,.
    Fransson, Thord
    Swedish Museum of Natural History, Department of.
    Fuelling in front of the barrier — are there age based behavioral differences in Garden Warblers Sylvia borin?2014In: PeerJ, ISSN 2167-8359Article in journal (Refereed)
    Abstract [en]

    Garden Warblers Sylvia borin were studied during autumn stopover in Crete before

    crossing the barrier of theMediterranean Sea and the Sahara Desert. Birds followed

    with transmitters show extensive stopover periods, which were longer in first-year

    birds, 16 days, compared with adult birds, 14 days. The distribution of body masses

    frombirds trapped in fig trees were used to estimate the departure body mass and the

    results found indicate that both age categories on average depart with a fuel load close

    to 100% of lean body mass. The movement of transmitter birds shows di

    fferences between

    first-year and adult birds. Adult birds move further away from the release site

    and many also left the study area. Several were found settled outside the study area,

    up to 17 km away, indicating that they regularly make longer stopover movements. It

    is suggested that this might be a result of that they return to a place where they stayed

    during an earlier migration. It was shown that stopover site fidelity exists and nine

    garden warblers were recaptured in the area during a following autumn. The results

    found highlights the importance of stopover areas close to the SaharaDesert.

  • 34. Barboutis, Christos
    et al.
    Larsson, Leo
    Steinholtz, Åsa
    Fransson, Thord
    Swedish Museum of Natural History, Department of Environmental research and monitoring.
    From Mediterranean to Scandinavia – timing and body mass condition in four long distance migrants2015In: Ornis Svecica, ISSN 1102-6812, Vol. 25, p. 51-58Article in journal (Refereed)
    Abstract [en]

    In spring, long-distance migrants are considered to adopta time-minimizing strategy to promote early arrival atbreeding sites. The phenology of spring migration wasexamined and compared between two insular stopoversites in Greece and Sweden for Icterine Warbler, WoodWarbler, Spotted Flycatcher and Collared Flycatcher. All  of them migrate due north which means that some proportion of birds that pass through Greece are headingto Scandinavia. The Collared Flycatcher had the earliestand the Icterine Warbler the latest arrival time. Thedifferences in median dates between Greece and Swedenwere 3–4 weeks and the passages in Sweden weregenerally more condensed in time. The average overallspeed estimates were very similar and varied between129 and 137 km/d. In most of the species higher speedestimates were associated with years when birds arrivedlate in Greece. After crossing continental Europe birdsarrive at the Swedish study site with significantly higherbody masses compared to when they arrive in Greece andthis might indicate a preparation for arriving at breedinggrounds with some overload.

  • 35. Barlow, Axel
    et al.
    Cahill, James A.
    Hartmann, Stefanie
    Theunert, Christoph
    Xenikoudakis, Georgios
    Fortes, Gloria G.
    Paijmans, Johanna L. A.
    Rabeder, Gernot
    Frischauf, Christine
    Grandal-d'Anglade, Aurora
    Garcia-Vazquez, Ana
    Murtskhvaladze, Marine
    Saarma, Urmas
    Anijalg, Peeter
    Skrbinsek, Tomaz
    Bertorelle, Giorgio
    Gasparian, Boris
    Bar-Oz, Guy
    Pinhasi, Ron
    Slatkin, Montgomery
    Dalén, Love
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Shapiro, Beth
    Hofreiter, Michael
    Partial genomic survival of cave bears in living brown bears2018In: Nature Ecology & Evolution, E-ISSN 2397-334X, Vol. 2, no 10, p. 1563-1570Article in journal (Refereed)
  • 36. Batalha-Filho, Henrique
    et al.
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Fjeldså, Jon
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Silveira, Luis F
    Miyaki, Cristina Y
    Molecular systematics and evolution of the Synallaxis ruficapilla complex (Aves: Furnariidae) in the Atlantic Forest.2013In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 67, no 1, p. 86-94Article in journal (Refereed)
    Abstract [en]

    The Neotropical Synallaxis ruficapilla complex is endemic to the Atlantic Forest and is comprised of three species: S. ruficapilla, S. whitneyi, and S. infuscata. This group is closely related to the Synallaxis moesta complex that occurs in the Andes, Tepuis, and Guianan shield. Here we used mitochondrial and nuclear gene sequences to infer the phylogeny and the time of diversification of the S. ruficapilla and S. moesta complexes. We also included samples of an undescribed population of Synallaxis that resembles other populations of the S. ruficapilla complex. Our results showed that different geographical lineages within the S. ruficapilla complex are reciprocally monophyletic, but the northern form (S. infuscata) grouped with an Andean taxon. This suggests that at least two lineages of this group independently colonized the Atlantic Forest. Specimens of the undescribed population formed a monophyletic clade with deep divergence. Estimated diversification dates were within the late Pliocene to Pleistocene (2.75-0.16 million of years ago). This suggests that at this time there was a higher connectivity between habitats in the rugged landscapes of the circum-Amazonian bioregions. The observed Pleistocene diversification within the Atlantic Forest is congruent in space and time with studies of other co-distributed organisms, and may be associated with climate changes and tectonic activity during this period.

  • 37. Batalha-Filho, Henrique
    et al.
    Pessoa, Rodrigo O
    Fabre, Pierre-Henri
    Fjeldså, Jon
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Silveira, Luís F
    Miyaki, Cristina Y
    Phylogeny and historical biogeography of gnateaters (Passeriformes, Conopophagidae) in the South America forests.2014In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 79, p. 422-432Article in journal (Refereed)
    Abstract [en]

    We inferred the phylogenetic relationships, divergence time and biogeography of Conopophagidae (gnateaters) based on sequence data of mitochondrial genes (ND2, ND3 and cytb) and nuclear introns (TGFB2 and G3PDH) from 45 tissue samples (43 Conopophaga and 2 Pittasoma) representing all currently recognized species of the family and the majority of subspecies. Phylogenetic relationships were estimated by maximum likelihood and Bayesian inference. Divergence time estimates were obtained based on a Bayesian relaxed clock model. These chronograms were used to calculate diversification rates and reconstruct ancestral areas of the genus Conopophaga. The phylogenetic analyses support the reciprocal monophyly of the two genera, Conopophaga and Pittasoma. All species were monophyletic with the exception of C. lineata, as C. lineata cearae did not cluster with the other two C. lineata subspecies. Divergence time estimates for Conopophagidae suggested that diversification took place during the Neogene, and that the diversification rate within Conopophaga clade was highest in the late Miocene, followed by a slower diversification rate, suggesting a diversity-dependent pattern. Our analyses of the diversification of family Conopophagidae provided a scenario for evolution in Terra Firme forest across tropical South America. The spatio-temporal pattern suggests that Conopophaga originated in the Brazilian Shield and that a complex sequence of events possibly related to the Andean uplift and infilling of former sedimentation basins and erosion cycles shaped the current distribution and diversity of this genus.

  • 38.
    Beimforde, Christina
    et al.
    Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany.
    Feldberg, Kathrin
    Systematic Botany and Mycology, Faculty of Biology, University of Munich (LMU), Menzinger Str. 67, 80638 Munich, Germany.
    Nylinder, Nylinder
    Swedish Museum of Natural History, Department of Botany.
    Rikkinen, Jouko
    Department of Biosciences, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland.
    Tuovila, Hanna
    Department of Biosciences, University of Helsinki, P.O. Box 65, FIN-00014 Helsinki, Finland.
    Dörfelt, Heinrich
    Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany.
    Gube, Matthias
    Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743 Jena, Germany.
    Jackson, Daniel
    Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany.
    Reitner, Joachim
    Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany.
    Seyfullah, Leyla
    Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany.
    Schmidt, Alexander
    Courant Research Centre Geobiology, University of Göttingen, Goldschmidtstraße 3, 37077 Göttingen, Germany.
    Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data2014In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, no 78, p. 386-398Article in journal (Refereed)
    Abstract [en]

    The phylum Ascomycota is by far the largest group in the fungal kingdom. Ecologically important mutualisticassociations such as mycorrhizae and lichens have evolved in this group, which are regarded as keyinnovations that supported the evolution of land plants. Only a few attempts have been made to date theorigin of Ascomycota lineages by using molecular clock methods, which is primarily due to the lack ofsatisfactory fossil calibration data. For this reason we have evaluated all of the oldest available ascomycetefossils from amber (Albian to Miocene) and chert (Devonian and Maastrichtian). The fossils representfive major ascomycete classes (Coniocybomycetes, Dothideomycetes, Eurotiomycetes, Laboulbeniomycetes,and Lecanoromycetes). We have assembled a multi-gene data set (18SrDNA, 28SrDNA, RPB1 andRPB2) from a total of 145 taxa representing most groups of the Ascomycota and utilized fossil calibrationpoints solely from within the ascomycetes to estimate divergence times of Ascomycota lineages with aBayesian approach. Our results suggest an initial diversification of the Pezizomycotina in the Ordovician,followed by repeated splits of lineages throughout the Phanerozoic, and indicate that this continuousdiversification was unaffected by mass extinctions. We suggest that the ecological diversity within eachlineage ensured that at least some taxa of each group were able to survive global crises and rapidlyrecovered.

  • 39.
    Bengtson, Annika
    et al.
    Swedish Museum of Natural History, Department of Botany.
    Englund, Markus
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Pruski, John F.
    Anderberg, Arne Alfred
    Swedish Museum of Natural History, Department of Botany.
    Phylogeny of the Athroismeae (Asteraceae), with a new circumscription of the tribe2017In: Taxon, ISSN 0040-0262, E-ISSN 1996-8175, Vol. 66, no 2, p. 408-420Article in journal (Refereed)
    Abstract [en]

    Athroismeae is a small tribe of the Asteraceae-Asteroideae, the members of which show considerable variation in morphology. A molecular phylogenetic study of the tribe is presented for the first time, based on plastid (ndhF, trnH-psbA, trnL-trnF) and nuclear data (ETS, ITS). The phylogenetic relationships between the different genera within Athroismeae are discussed, and in addition, three unispecific genera: Anisochaeta, Artemisiopsis and Symphyllocarpus as well as Duhaldea (Inula) stuhlmannii, all earlier placed in other tribes, are here shown to belong within Athroismeae. Symphyllocarpus is sister to Centipeda and the earlier Symphyllocarpinae includes Centipedinae in synonymy. Furthermore, Cardosoa and Philyrophyllum are found to be integrated within Anisopappus and their generic status cannot be maintained. An outline of an amended circumscription of the Athroismeae is presented, with three new combinations and a description of the new subtribe Lowryanthinae.

  • 40. Bengtson, Annika
    et al.
    Nylinder, Stephan
    Swedish Museum of Natural History, Department of Botany.
    Karis, Per Ola
    Anderberg, Arne A.
    Swedish Museum of Natural History, Department of Botany.
    Evolution and diversification related to rainfall regimes: diversification patterns in the South African genus Metalasia (Asteraceae-Gnaphalieae).2015In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 42, no 1, p. 121-131Article in journal (Refereed)
    Abstract [en]

    Aim. The Cape region is known for its exceptional species richness, although much remains unknown regarding the appearance of the modern Cape flora. One explanation is that floral diversification was influenced by the establishment of winter rainfall/summer arid conditions hypothesized to have occurred towards the end of the Miocene. We studied the evolution and diversification of the plant genus Metalasia (Asteraceae–Gnaphalieae), with the aim of testing whether radiation patterns may have been influenced by the climatic changes.

    Location. South Africa, with emphasis on the south-west.

    Methods. The radiation of Metalasia was investigated using two approaches: a species diffusion approach, which estimated the ancestral areas by means of a relaxed random walk while sampling from extant distributions; and a discrete approach, in which distributions were defined according to the phytogeographical centres of the Cape region. Secondarily derived clock rates from an earlier Gnaphalieae study were used for calibration purposes.

    Results. Our analyses date Metalasia to approximately 6.9 Ma, after the Miocene–Pliocene boundary and the establishment of the winter rainfall/summer arid conditions. Metalasia consists of two sister clades: Clade A and Clade B. Clade B, which is endemic to the winter rainfall area, is estimated to have diversified c. 6.4 Ma, whereas Clade A, with a main distribution in the all-year rainfall area, is considerably younger, with a crown group age estimated to 3.3 Ma. Diversification rates suggest an early rapid speciation, with rates decreasing through time both for Metalasia and for clades A and B separately. Ancestral area estimations show a possible scenario for the radiation of Metalasia to its current diversity and distribution, with no conflict between results inferred from diffusion or discrete methods.

    Main conclusions. The diversification of Metalasia is estimated to have begun after the establishment of the winter rainfall/summer arid conditions, consistent with its radiation having been influenced by changes in the climatic regime.

  • 41.
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Presentation of the 2010 Charles Schuchert Award of the Paleontological Society to Philip C. J. Donoghue.2011In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Journal of Paleontology, Vol. 85, no 5, p. 1015-Article in journal (Refereed)
    Abstract [en]

    LADIES AND gentlemen, friends and colleagues, the winner of the 2010 Charles Schuchert Award is Professor Philip Donoghue of the University of Bristol. In the natural progression of our personal lives, the transition from young snot to old fart is so gradual that one tends not to recognize it, least of all in oneself. Most of us— those further along in their careers— have passed through the stage of young, promising paleontologist to become middleaged promising paleontologists. Not so Phil Donoghue. I first met him when he was a graduate student at the University of Leicester. We got into a discussion about the nature of conodonts and certain pet ideas of mine that I had published. Phil did not agree with me so he went down in my book as a young snot. Soon thereafter, he published a ground-breaking, paradigm-changing paper, together with Peter Forey and Dick Aldridge, on the phylogenetic position of conodonts. Now, I realized that it was I who was the old fart. Phil had demonstrated that he had skipped the young-and-promising stage. He was, and is, young and delivering. Most people who start working on conodonts tend to remain with them. There is something about that mouth apparatus and the way in which it grabs hold of you. But Phil quickly tore himself loose from its grip. He quickly demonstrated an unquenchable zeal in attacking central issues in evolutionary paleontology, such as the origin of microstructures in teeth, the origin of teeth in jaws, the origin of jaws in vertebrates, the origin of vertebrates among animals, the origin of animals in the biosphere, and so on. I fear he will not stop until he has solved the question of the origin of life, the universe, and everything else. The breadth of questions he has already addressed is one aspect of Phil’s work. The diversity of tools he brings to bear on them is another. There is a lot of grinding powder under his fingernails, and lots of devo in his evo. After a sabbatical at the University of Bath, where he seems to have broken every rule of the Sabbath, he came out as a full-fledged molecular biologist, with RNA libraries at his fingertips. He is at the forefront in marrying data from living organisms with that from fossil taxa in phylogenetic analyses. Recently, he came out in defense of the paraphyletic stem group with arguments such that I have high hopes for his post-Schuchert development. Yes, paraphyletic groups are much more interesting than the monophyletic dead-ends called clades, although Phil of course refuses to call them groups. When Phil and some colleagues published a paper in Nature on the Cambrian fossil embryo Markuelia (again showing me wrong on a central issue), it caught the eye of Marco Stampanoni, a physicist who works at the Swiss Light Source (SLS) synchrotron near Zu¨ rich, in Switzerland. Marco had been developing methods of X-ray microtomography, using SLS beamlines. He contacted Phil with a proposal to collaborate, and Phil contacted me. Now, our collaboration based on this revolutionary technique, with Phil at the forefront, has opened our eyes to a huge amount of information to which we did not have access only a few years ago. Taphonomy is like the weather, people speak about it, but few do anything about it. But if you neglect it, you are in deep peril. Phil is much more concerned about taphonomy than most colleagues I know, and he does something about it. He started a project with embryologist Rudy Raff to determine how bacteria go about decomposing embryos in ways such that they are upgraded to exquisite fossils. He is engaging many colleagues, post-docs and students in the investigation of these processes and their end results. As a result, we are gaining insight into how bacteria can invade, devour and faithfully replicate intracellular features, and how different populations of bacteria play different roles in the process. An intriguing observation has emerged from Phil’s taphonomic work with Mark Purnell. Taphonomic degradation tends to bring about a stemward slippage of taxa in their apparent phylogenetic relationships, on account of sequential disappearance of preserved apomorphies. The general significance of this observation has still to be tested, but its potential importance for the phylogenetic analysis of fossils is obvious. Phil is leading an amazingly diverse and successful program in paleontology at the University of Bristol, permeated by his holistic approach and addressing everything from organismbased paleontology to molecular biology. Molecular, organismic, orgiastic paleontology—that’s the realm of Phil Donoghue. Mr. President, please hand the Schuchert Award for 2010 over to Phil. He thoroughly deserves it.

  • 42.
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Presentation of the 2010 Paleontological Society Medal to Bruce Runnegar.2011In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Journal of Paleontology, Vol. 85, no 5, p. 1012-Article in journal (Refereed)
    Abstract [en]

    Ladies and gentlemen, friends and colleagues, the 2010 Paleontological Society Medal is awarded to Professor Bruce Runnegar of the University of California at Los Angeles. Preparing for this presentation, I got hold of a list of Bruce’s invited lectures, given during the past ten years. There are 86 titles on almost as many subjects. I will mention what these presentations were about, so you can get an impression of this Renaissance mind: Carbon isotopes and ocean evolution; Precambrian–Cambrian stratigraphy; Molecular evolution and the fossil record; Ediacaran organisms; Life on Mars; Oxygen and metazoan evolution; Orbital dynamics of the Earth–Moon system; Snowball Earth; Multiplated mollusks; Mass-independent fractionation of sulfur; Biomineralization; The Cambrian Explosion; Geobiology in the Archean; Cross-calibration of geological and astronomical time scales; Origins of biological complexity; Astrobiology of the Earth; Astrobiology of everything else; The Acraman impact of the Ediacaran; Biosignatures in ancient rocks; Microbial metabolism in the Early Archean. Now, most people can waffle about almost anything. A good teacher can read up on such topics and deliver useful lectures on them to students. But, as you will know if you are the least bit familiar with Bruce’s work, these are nearly all topics in fields where he has made startlingly innovative and pioneering contributions. Some would say that his most important contributions are missing from this list, such as molecular paleobiology, for example, or—if you prefer more tangible fossils—the systematics and evolution of Cambrian and Permian mollusks. But what is represented on the list is sufficient to document several brilliant careers in science: Bruce broke new ground in understanding the biomineralization processes of early mollusks by working with natural phosphatic replicas of the now vanished crystals of various species of calcium carbonate. He published a seminal set of papers on the evolution of the earliest mollusks, together with his longtime friend John Pojeta. And, as a leader of the astrobiology movement, Bruce has not only inspired everyone to start looking at life in a universal context, he has also brought his visions to life as Director of NASA’s Astrobiology Institute. It was in this context that Bruce was formally transformed from a U.S.-based Aussie to a full-fledged Australian– American (which is, I think, the politically correct term). In reference to molecular paleontology, I have some personal recollections. Bruce and I both have backgrounds as editors of paleontological journals. Bruce founded and for several years edited the successful Australasian journal Alcheringa, which is still going strong. Some of my first interactions with Bruce occurred in the 1970s, when he submitted manuscripts to Lethaia, of which I was an editor. One of my early forays was to question the number of authors of one of these manuscripts. I knew that no less than five authors of a single paper was excessive and confronted Bruce with this. It may have been the first time I really annoyed him, as he politely told me not to forget to turn my brain on, next time I wrote to him. Well, recently I saw an article in Nature with 230 authors, at which point it finally became clear to me that Bruce was ahead of his time. But back in those times I was a wee bit miffed, so when Bruce sent me a manuscript in which he estimated geological ages of major animal lineages using molecular clock techniques, I knew I could get my revenge. I sent the paper out for review by the sharpest molecular biologists of the day, smugly expecting to receive patronizing comments about paleontologists who should stick to their snail shells rather than pretending to be real scientists. No such luck. The reviews that came in were extravagant in their praise of the paper. Published in 1982, it predated by almost 15 years the avalanche of contributions that later came out on this topic. As usual, Bruce was ahead of the pack, but when others reached the spot where he had stood 15 years earlier, he wasn’t there anymore. Discrepancies between molecular and fossil data for a while seemed insurmountable, not to mention the discrepancies between different sets of molecular data and different sorts of analyses. But Bruce had inspired a bright set of younger biologists and paleontologists to refine their calculations. When the dust settled, one of those with whom Bruce had shared his spark, Kevin Peterson, was able to show that there is no significant conflict between the dates provided by fossils and by molecules. But I mentioned molecular paleontology. In 1986, Bruce published a seminal paper with just that title. In it he expressed his credo, thus: ‘‘palaeontologists should use all available sources of information to understand the evolution of life and its effect on the planet.’’ These are not empty words; they present a formidable challenge. Like all splendid visions, they stake out a direction rather than a goal. That it is possible to pursue this vision we see from the example set by this year’s Schuchert Award winner, Phil Donoghue, who together with Kevin Peterson and Roger Summons wrote a stimulating twenty-first century follow-up to Bruce’s earlier paper. But the foremost example is Bruce Runnegar himself. Here is a taste of the way in which his productive mind works. In 1982, Bruce used the anatomy and hypothesized physiology of the Ediacaran fossil Dickinsonia to estimate constraints for ambient oxygen levels in the Ediacaran atmosphere. This paper is much cited, and geochemists are only now catching up with him, developing geochemical proxies to test the hypothesis that a rising oxygen level was a trigger for the Cambrian Explosion, or, as Bruce so aptly put it, that one ‘‘ingredient, as in most explosives, may well have been a strong oxidising agent.’’ Finally, consider another example. In 1998, Bruce published a cladistic analysis of glaciogenic sediments, testing and corroborating the hypothesis that there were only two major Neoproterozoic glaciations, a result that still seems to stand. Who but Bruce would have thought of such a preposterous idea, using cladistics to resolve a stratigraphical conundrum? Bruce Runnegar has, over the years, formed collegial bonds with many scientists. The many younger people inspired by him include Phil Donoghue, now standing on Bruce’s shoulders. Bruce himself has stood on the shoulders of other giants, as he is quick to acknowledge. But, like Sir Isaac Newton, he has no reason to be bashful about his success, and I don’t think he is. The Paleontological Society Medal was really made for Bruce Runnegar, so please, Mr. President, give it to him!

  • 43.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Collins, Desmond
    Chancelloriids of the Cambrian Burgess Shale2015In: Palaeontologia Electronica, ISSN 1935-3952, E-ISSN 1094-8074, Vol. 18, no 1, p. 1-67Article in journal (Refereed)
    Abstract [en]

    The cactus-like chancelloriids from the Middle Cambrian Burgess Shale are revised on the basis of Walcott’s (1920) original collections and new material containing several hundred specimens collected by Royal Ontario Museum field expeditions from 1975 to 2000. Walcott’s interpretation of chancelloriids as sponges was based on a misinterpretation of the dermal coelosclerites as embedded sponge-type spicules, an interpretation that further led to the lumping of three distinct taxa into one species, Chancelloria eros Walcott, 1920. The other two taxa are herein separated from C. eros and described as Allonnia tintinopsis n.sp. and Archiasterella coriacea n.sp., all belonging to the Family Chancelloriidae Walcott, 1920. Chancelloriids were sedentary animals, anchored to shells or lumps of debris in the muddy bottom, or to sponges, or to other chancelloriids. They had a radially symmetrical body and an apical orifice surrounded by a palisade of modified sclerites. Well-preserved integuments in Al. tintinopsis and Ar. coriacea do not show any ostium-like openings. Neither is there any evidence for internal organs, such as a gut. Partly narrowed specimens suggest that the body periodically contracted from the attached end to expel waste material from the body cavity. Chancelloriids were close in organization to cnidarians but shared the character of coelosclerites with the bilaterian halkieriids and siphogonuchitids. The taxon Coeloscleritophora is most likely paraphyletic.

  • 44.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Cunningham, John A.
    Yin, Chongyu
    Donoghue, Philip C.J.
    University of Bristol.
    A merciful death for the “earliest bilaterian,” Vernanimalcula.2012In: Evolution and Development, ISSN 1520-541x, Vol. 14, no 5, p. 421-427Article in journal (Refereed)
    Abstract [en]

    Fossils described as Vernanimalcula guizhouena, from the nearly 600 million-year-old Doushantuo Formation in South China, have been interpreted as the remains of bilaterian animals. As such they would represent the oldest putative record of bilaterian animals in Earth history, and they have been invoked in debate over this formative episode of early animal evolution. However, this interpretation is fallacious. We review the evidential basis of the biological interpretation of Vernanimalcula, concluding that the structures key to animal identity are effects of mineralization that do not represent biological tissues, and, furthermore, that it is not possible to derive its anatomical reconstruction on the basis of the available evidence. There is no evidential basis for interpreting Vernanimalcula as an animal, let alone a bilaterian. The conclusions of evolutionary studies that have relied upon the bilaterian interpretation of Vernanimalcula must be called into question.

  • 45.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Ivarsson, Magnus
    Swedish Museum of Natural History, Department of Paleobiology.
    Astolfo, Alberto
    Paul Scherrer Institute.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Broman, Curt
    Stockholm University.
    Marone, Federica
    Paul Scherrer Institute.
    Stampanoni, Marco
    ETH Zürich.
    Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts.2014In: Geobiology, ISSN 1472-4677, E-ISSN 1472-4669, Vol. 12, no 6, p. 489-496Article in journal (Refereed)
    Abstract [en]

    The deep biosphere of the subseafloor crust is believed to contain a significant part of Earth’s biomass, but because of the difficulties of directly observing the living organisms, its composition and ecology are poorly known. We report here a consortium of fossilized prokaryotic and eukaryotic microorganisms, occupying cavities in deep-drilled vesicular basalt from the Emperor Seamounts, Pacific Ocean, 67.5 meters below seafloor (mbsf). Fungal hyphae provide the framework on which prokaryote-like organisms are suspended like cobwebs and iron-oxidizing bacteria form microstromatolites (Frutexites). The spatial interrelationships show that the organisms were living at the same time in an integrated fashion, suggesting symbiotic interdependence. The community is contemporaneous with secondary mineralizations of calcite partly filling the cavities. The fungal hyphae frequently extend into the calcite, indicating that they were able to bore into the substrate through mineral dissolution. A symbiotic relationship with chemoautotrophs, as inferred for the observed consortium, may be a prerequisite for the eukaryotic colonization of crustal rocks. Fossils thus open a window to the extant as well as the ancient deep biosphere.

  • 46.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Rasmussen, Birger
    Curtin University.
    Ivarsson, Magnus
    Swedish Museum of Natural History, Department of Paleobiology.
    Muhling, Janet
    Curtin University.
    Broman, Curt
    Stockholm University.
    Marone, Federica
    Stampanoni, Marco
    Bekker, Andrey
    University of California Riverside.
    Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt.2017In: Nature Ecology & Evolution, ISSN 2397-334X, Vol. 1, no 6, p. 1-6, article id 0141Article in journal (Refereed)
    Abstract [en]

    Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.

  • 47.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Sallstedt, Therese
    Swedish Museum of Natural History, Department of Paleobiology.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Whitehouse, Martin
    Swedish Museum of Natural History, Department of Geology.
    Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae2017In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 15, no 3, p. 1-38, article id e2000735Article in journal (Refereed)
    Abstract [en]

    The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.

  • 48. Bennike, Ole
    et al.
    Hedenäs, Lars
    Swedish Museum of Natural History, Department of Botany.
    Lemdahl, Geoffrey
    Wiberg-Larsen, Peter
    A multiproxy macrofossil record of Eemian palaeoenvironments from Klaksvík, the Faroe Islands2018In: Boreas, ISSN 0300-9483, E-ISSN 1502-3885, Vol. 47, p. 106-113Article in journal (Refereed)
  • 49. Bergamini, Ariel
    et al.
    Bisang, Irene
    Swedish Museum of Natural History, Department of Botany.
    Hodgetts, Nick
    Lockhart, Nick
    van Rooy, Jacques
    South African National Biodiversity Institute,.
    Hallingbäck, Tomas
    Recommendations for the use of critical terms when applying IUCN redlistingcriteria to bryophytes2019In: Lindbergia, ISSN 0105-0761, E-ISSN 2001-5909Article in journal (Refereed)
  • 50. Bergamini, Ariel
    et al.
    Studer, Lisa
    Valentini, Maya
    Jacot, Katja
    Bisang, Irene
    Swedish Museum of Natural History, Department of Botany.
    Profitieren Moose von Biodiversitätsförderflächen im Landwirtschaftsgebiet?2017In: NL-Inside, Vol. 1//17, p. 17-20Article in journal (Other (popular science, discussion, etc.))
1234567 1 - 50 of 1050
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf