Change search
Refine search result
1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bomfleur, Benjamin
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Schöner, Robert
    Schneider, Jörg
    Viereck, Lothar
    Kerp, Hans
    McKellar, John
    From the Transantarctic Basin to the Ferrar Large Igneous Province: New palynostratigraphic age constraints for Triassic-Jurassic sedimentation and magmatism in East Antarctica2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 207, p. 18-37Article in journal (Refereed)
    Abstract [en]

    We present new palynological data from the Transantarctic Mountains that clarify the timing of sedimentary and magmatic processes in the transition from continental deposition of the Beacon Supergroup to emplacement of the Ferrar Large Igneous Province. Samples were collected from twenty-three Triassic and Jurassic sections in the southern area of north Victoria Land (NVL), East Antarctica. Recovered palynomorph assemblages are correlated with the widely used, although informal palynostratigraphic framework established for eastern Australia by Price. The associated Late Triassic–earliest Jurassic zone, APT5, is modified here with a proposed new subdivision: Lower APT5 (“APT5L”; middle–late Norian), Middle APT5 (“APT5M”; Rhaetian), and Upper APT5 (“APT5U”;Hettangian–earliest Sinemurian). We further propose a modification unifying the relevant formal eastern Australian and New Zealand palynostratigraphic zones, with a new Polycingulatisporites crenulatus Association Zone (new zonal status) that includes the P. crenulatus Association Subzone (new subzone; equivalent toAPT5L) and the following Foveosporites moretonensis Association Subzone (new subzonal status; equivalent to APT5M). Our palynostratigraphic dating of the NVL assemblages demonstrates that the onset of sedimentation was diachronous in this part of the Transantarctic Basin, ranging from at least the Rhaetian to, in places, early Sinemurian. By lack of evidence for rocks containing APT5U assemblages and by analogy with the few coeval sections in Australia, we infer that the Hettangian interval in NVL is probably consumed by unconformity. Depositionof ashes from distal silicic volcanism commenced in the early Sinemurian and reached a peak phase beginning in middle Pliensbachian (ca 187Ma), coinciding with the first major magmatic interval of the silicic Chon Aike Province in Patagonia and West Antarctica. Two major episodes of phreatomagmatic activity, driven by shallow-level sill intrusion into sandstone aquifers, occurred during the middle Pliensbachian and during the late Pliensbachian–early Toarcian. The latter episode was closely followed by the first pillow extrusion and local lava effusion. Contrary to some previous studies, we further conclude that all available palynological evidence is compatible with a short-lived emplacement of the plateau-forming Kirkpatrick Basalt at around 180 Ma during the early Toarcian.

  • 2. Bouchal, Johannes, M.
    et al.
    Mayda, S.
    Akgün, F.
    Grímsson, F.
    Zetter, R.
    Denk, Thomas
    Miocene palynofloras of the Tınaz lignite mine, Muğla, southwest Anatolia: taxonomy, palaeoecology and local vegetation change2017In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 243, p. 1-36Article in journal (Refereed)
  • 3.
    Bouchal, Johannes M.
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Mayda, Serdar
    Natural History Museum, Ege University, 35100 Izmir, Turkey.
    Zetter, Reinhard
    University of Vienna, Department of Palaeontology, Vienna, Austria.
    Grímsson, Fridgeir
    University of Vienna, Department of Palaeontology, Vienna, Austria.
    Akgün, Funda
    Dokuz Eylül University, Department of General Geology, 35210 Izmir, Turkey.
    Denk, Thomas
    Swedish Museum of Natural History, Department of Paleobiology.
    Miocene palynofloras of the Tınaz lignite mine, Muğla, southwest Anatolia: taxonomy, palaeoecology and local vegetation change2017In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 243, p. 1-36Article in journal (Refereed)
    Abstract [en]

    Middle Miocene deposits exposed at the Tınaz lignite mine, Yatağan Basin, Muğla, southwestern Turkey, were palynologically investigated. The Tınaz lignite mine section belongs to the Eskihisar Formation. The lignite seam at the base of the section represents the uppermost part of the Turgut Member. Above, c. 65 m of clayey siltstone, limestone, and marls represent the Sekköy Member. Nine spores, zygospores and cysts of fungi and algae, seven moss and fern spores, 12 gymnosperm pollen types, and more than 80 angiosperm pollen taxa were recovered from the Tınaz lignite mine section. Three pollen zones were recognized, of which pollen zone 1 corresponds to the formation of the main lignite seam and reflects the change from a fluviatile to a lacustrine depositional setting. Pollen zones 2 and 3 and a transitional zone 2-3 reflect different stages of lake development and a shift in local vegetation from forested (pollen zones 1 and 2) to more open (transitional zone 2-3, zone 3). Interpreting changes in regional vegetation from pollen zones 1 to 3 is not straightforward as changes in the pollen spectra may be affected by changing contributions of airborne and water transported pollen and spores to the observed palynoassemblages. Age inference for the Tınaz lignite mine section has been complicated by the absence of datable ash layers, associated mammal faunas, or marine sediments. However, pollen zone 3 shares key features with the pollen spectrum recovered from the nearby mammal site Yenieskihisar (upper part of Sekköy Member) for which an age of 12.5-11.2 Ma has been suggested, and to the youngest pollen zone recovered from the mammal locality Çatakbağyaka, 10 km south of Tınaz, that probably represents mammal zone MN7/8 instead of MN5 or MN6 as previously suggested. In contrast, pollen zones 1 and 2 are fairly similar to the basal parts of the Çatakbağyaka pollen flora (uppermost parts of Turgut Member, basalmost parts of Sekköy Member). Furthermore, new mammal data from the Yatağan basin suggest that the layers below pollen zone 1 are MN4/5, and that carnivores cooccuring with pollen zone 1 in the main lignite seam of Eskihisar probably belong to MN6. Hence, a Langhian to Serravallian age can be inferred for pollen zones 1 and 2 of the Tınaz lignite mine section, and a late Serravallian age for pollen zone 3. Palaeobiogeographic relationships of the palynofloras are generally northern hemispheric, with many north temperate tree taxa showing modern disjunctions East Asia- NorthAmerica (Tsuga, Carya), East Asia- western Eurasia (Zelkova), East Asia- North America- western Eurasia (Liquidambar), or restricted to East Asia (Cathaya, Eucommia) or North America (Decodon). A few taxa belong to extinct lineages that have complex biogeographic patterns (Engelhardioideae, Cedrelospermum). The presence of Picrasma (Simaroubaceae) in the lower lignite layers of pollen zone 1 is remarkable, as the botanical affinities with the enigmatic flower Chaneya present in early to middle Miocene deposits of Turkey and Central Europe have recently been shown to be with Picrasma

  • 4. Decombeix, Anne-Laure
    et al.
    Bomfleur, Benjamin
    Swedish Museum of Natural History, Department of Paleobiology.
    Taylor, Edith
    Taylor, Thomas
    New data on the anatomy and systematic affinities of corystosperm wood from the Triassic of Antarctica2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 203, no 1, p. 22-34Article in journal (Refereed)
    Abstract [en]

    Anatomically preserved trunks and young stems of corystosperm seed ferns are described from the Triassic of Fremouw Peak, Beardmore Glacier area, Antarctica. Based on characters of the primary and secondary vascular system, these new specimens are assigned to Kykloxylon, a genus that was established based on young stems with attached Dicroidium leaf bases. The largest specimens illustrate how some secondary growth characters, such as unequal cambial activity, appeared during later development, which enables a better comparison of Kykloxylon with trunks assigned to other corystosperm genera. Jeffersonioxylon from the Gordon Valley, Antarctica, and Cuneumxylon from South America show strong similarities with the newly described larger Kykloxylon trunks from Fremouw Peak, and might be considered congeneric. Our results provide further support for the presence of two anatomically and morphologically distinct kinds of Dicroidium-bearing trees in the Triassic vegetation of Gondwana, one with a palm-like habit and Rhexoxylon stems and the other with a more Ginkgo-like habit and Kykloxylon/Cuneumxylon-type stems

  • 5.
    Decombeix, Anne-Laure
    et al.
    AMAP, Univ Montpellier.
    Galtier, Jean
    AMAP, Univ Montpellier.
    McLoughlin, Stephen
    Swedish Museum of Natural History, Department of Paleobiology.
    Meyer-Berthaud, Brigitte
    AMAP, Univ Montpellier.
    Webb, Gregory E.
    School of Earth and Environmental Sciences, The University of Queensland.
    Blake, Paul R.
    Geological Survey of Queensland.
    Early Carboniferous lignophyte tree diversity in Australia: Woods fromthe Drummond and Yarrol basins, Queensland2019In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 263, p. 47-64Article in journal (Refereed)
    Abstract [en]

    Early Carboniferous (Mississippian) permineralized woods from Australia with multiseriate rays have been customarily assigned or compared to the European genus Pitus, despite the absence of information on their primary vascular anatomy. In the context of continuing work on the diversity of Late Devonian andMississippian floras of Gondwana, we studied new silicified woods with secondary xylem similar to that of Pitus (multiseriate rays, araucarioid radial pitting) from two sedimentary basins of Queensland, Australia. In the Drummond Basin, three morphotypes of wood of Viséan age can be distinguished based on ray size in tangential section. Although this variation is similar to that observed between the various European species of Pitus, information on the primary vascular anatomy of the trees provided by three incomplete specimens excludes an affinity with Pitus for at least two taxa. In the Yarrol Basin, two well-preserved late Viséan trunks also have characters similar to Pitus but can be distinguished from that genus and other previously described Mississippian trees, in particular by the anatomy of their primary vascular system and departing leaf traces. They are assigned to a new genus, Ninsaria. Collectively, the new specimens from Queensland show that wood traditionally referred to “Pitus” from Australia actually belongs to several other types of trees that are not known from Europe or North America, indicating probable floristic provincialism between the Northern and Southern hemisphere floras at this time. These new fossils corroborate the existence of a global Mississippian diversification of (pro)gymnosperm trees already noted in Laurussia. They also indicate that the Mississippian floras of Australia were more diverse and complex than traditionally inferred.

  • 6.
    Denk, Thomas
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Velitzelos, Dimitrios
    National and Kapodistrian University of Athens, Faculty of Geology and Geoenvironment, Department of Historical Geology and Paleontology, Panepistimiopolis, Athens 15784, Greece.
    Güner, Tuncay H.
    Istanbul University, Faculty of Forestry, Department of Forest Botany, 34473 Bahceköy, Istanbul, Turkey.
    Bouchal, Johannes M.
    Swedish Museum of Natural History, Department of Paleobiology.
    Grímsson, F.
    University of Vienna, Department of Palaeontology, 1090 Vienna, Austria.
    Grimm, Guido
    Department für Paläontologie, Universität Wien, Wien, Austria.
    Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger2017In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, ISSN 0034-6667, Vol. 241, p. 98-128Article in journal (Refereed)
    Abstract [en]

    Sclerophyllous oaks (genus Quercus) play important roles in Neogene ecosystems of south-western Eurasia. Modern analogues (‘nearest living relatives’) for these oaks have been sought among five of six infrageneric lineages of Quercus, distributed across the entire Northern Hemisphere. A revision of leaf fossils from lower Miocene to Pliocene deposits suggests that morphotypes of the Quercus drymeja complex are very similar to a number of extant Himalayan, East Asian, and Southeast Asian species of Quercus Group Ilex and may indicate subtropical, relatively humid conditions. Quercus mediterranea comprises leaf morphotypes that are encountered in modern Mediterranean species of Quercus Group Ilex, but also in Himalayan and East Asian members of this group indicating fully humid or summer-wet conditions. The fossil taxa Quercus drymeja and Q. mediterranea should be treated as morphotype complexes, which possibly comprised different biological species at different times. Quercus mediterranea, although readily recognizable as a distinct morphotype in early to late Miocene plant assemblages, may in fact represent small leaves of the same plants that constitute the Quercus drymeja complex. Based on the available evidence, the taxa [GG1] forming the Q. drymeja complex and Q. mediterranea thrived in fully humid or summer-wet climates. The onset of the modern vegetational context of Mediterranean sclerophyllous oaks is difficult to trace, but may have been during the latest Pliocene/early Pleistocene.

  • 7. Grimm, Guido
    et al.
    Bouchal, Johannes M.
    Swedish Museum of Natural History, Department of Paleobiology.
    Denk, Thomas
    Swedish Museum of Natural History, Department of Paleobiology.
    Potts, Alastair
    Fables and foibles: A critical analysis of the Palaeoflora database and the Coexistence Approach for palaeoclimate reconstruction2016In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 233, p. 216-235Article in journal (Refereed)
    Abstract [en]

    The ‘Coexistence Approach’ is amutual climate range (MCR) technique combinedwith the nearest-living relative (NLR) concept. It has been widely used for palaeoclimate reconstructions based on Eurasian plant fossil assemblages; most of them palynofloras (studied using light microscopy). The results have been surprisingly uniform, typically converging to subtropical, per-humid or monsoonal conditions. Studies based on the Coexistence Approach have had a marked impact in literature, generating over 10,000 citations thus far. However, recent studies have pointed out inherent theoretical and practical problems entangled in the application of this widely used method. But so far little is known how results generated by the Coexistence Approach are affected by subjective errors, data errors, and violations of the basic assumptions. The majority of Coexistence Approach studies make use of the Palaeoflora database (the combination of which will be abbreviated to CA + PF). Testing results produced by CA + PF studies has been hindered by the general unavailability of the contents in the underlying Palaeoflora database; two exceptions are the mean-annual temperature tolerances and lists of assigned associations between fossils and nearest-living relatives. Using a recently published study on the Eocene of China,which provides the first and only insight into the data structure of the Palaeoflora database,we compare the theory and practice of Coexistence Approach using the Palaeoflora database (CA+PF).We show that CA+PF is riddled by association and climate data error.We reveal flaws in the application of the Coexistence Approach,which is often in stark contrast to the theory of the method. We show that CA + PF is highly vulnerable against numerous sources of errors, mainly because it lacks safeguards that could identify unreliable data. We demonstrate that the CA+PF produces coherent, pseudo-precise results even for artificially generated, randomplant assemblages. AlternativeMCR-NLR methods can surpass the most imminent deficits of the Coexistence Approach, and may be used as a stop-gap until more accurate bioclimatic and distribution data on potential Eurasian NLRs, and theoretically and statistically robust methods will become available. Finally, general guidelines are provided for the future application of methods using the mutual climatic range with nearest living relatives approach when reconstructing climate from plant fossil assemblages.

  • 8.
    Hedenäs, Lars
    et al.
    Swedish Museum of Natural History, Department of Botany.
    Heinrichs, Jochen
    Schmidt, Alexander R.
    Bryophytes of the Burmese amber forest: Amending and expanding the circumscription of the Cretaceous moss genus Vetiplanaxis2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 209, p. 1-10Article in journal (Refereed)
  • 9. Heinrichs, Jochen
    et al.
    Hedenäs, Lars
    Swedish Museum of Natural History, Department of Botany.
    Schäfer-Verwimp, Alfons
    Feldberg, Kathrin
    Schmidt, Alexander R.
    An in situ preserved moss community in Eocene Baltic amber2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 210, p. 113-118Article in journal (Refereed)
  • 10.
    Mays, Chris
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Coward, Andrew
    School of Earth, Atmosphere and Environment, Monash University, 9 Rainforest Walk, Clayton, Victoria 3800, Australia.
    O'Dell, Luke
    Institute for Frontier Materials, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia.
    Tappert, Ralf
    Department of Geology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
    The botanical provenance and taphonomy of Late Cretaceous Chatham amber, Chatham Islands, New Zealand2019In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 260, p. 16-26Article in journal (Refereed)
    Abstract [en]

    Fossil resin (amber) has been recently reported as common, but small, sedimentary components throughout thelower Upper Cretaceous (Cenomanian; 99–94 Ma) strata of the Tupuangi Formation, Chatham Islands, easternZealandia. From these deposits, resin has also been identified and obtained from well-preserved, coalified specimensof the conifer fossil Protodammara reimatamorioriMays and Cantrill, 2018. Here, we employed attenuatedtotal reflectance Fourier-transform infrared spectroscopy (ATR-FTIR) to both dispersed and in situ amber specimens.These resulted in very similar chemical signatures, indicating that these fossils are likely from the same orclosely-related botanical sources. The FTIR data are typical of a conifer source within the ‘cupressaceous resins’category of Tappert et al. (2011). Carbon-13 nuclear magnetic resonance spectroscopy (13C NMR) facilitatedthe probable identification of these ambers as ‘Class Ib' (sensu Anderson et al. 1992). Based on these spectraldata sets, the likely botanical sources of the amber were either Araucariaceae or Cupressaceae; both of these coniferfamilies were common and widespread in the Southern Hemisphere during the Cretaceous. However, themorphology and anatomy of P. reimatamoriori support an affinity to the latter family, thus indicating that the Cretaceousamber of the Chatham Islands was generally produced by members of the Cupressaceae. Comparing theFTIR data to the published spectra of modern resins, we also identify a band ratio which may aid in distinguishingbetween the FTIR spectra of Araucariaceae and Cupressaceae, and outline the limitations to this approach. A highconcentration of ester bonds in Chatham amber specimens, which exceeds typical Cupressaceae resins, is probablycaused by taphonomic alteration via thermal maturation. The source of thermal alteration was likely preburialwildfires,conditions forwhich P. reimatamoriori was adapted to as part of its life cycle. A comparison of ambersof the Chatham Islands with modern resins and amber from various localities in Australasia reveals that,taphonomic influences aside, Chatham amber has a unique signature, suggesting that members of the basalCupressaceae (e.g., Protodammara) were not major contributors to other documented Australasian amber deposits.The closest analogy to Chatham amber deposits appears to be the Upper Cretaceous Raritan Formation,USA, which is characterised by its rich amber, charcoal and Cupressaceae fossil assemblages. This study furthersupports the hypotheses that the early Late Cretaceous south polar forests were dominated by Cupressaceae,and regularly disturbed by wildfires.

  • 11.
    McLoughlin, Stephen
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Drinnan, Andrew
    School of Botany, The University of Melbourne, Parkville, Victoria 3052, Australia.
    Slater, Ben
    School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
    Hilton, Jason
    School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
    Paurodendron stellatum: a new Permian permineralized herbaceous lycopsid from the Prince Charles Mountains, Antarctica2015In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 220, p. 1-15Article in journal (Refereed)
    Abstract [en]

    Diminutive, silica-permineralized lycopsid axes, from a Guadalupian (Middle Permian) silicified peat in the Bainmedart Coal Measures of East Antarctica are described and assigned to Paurodendron stellatum sp. nov. Axes consist only of primary-growth tissues with a vascular system characterized by an exarch actinostele with 6–20 protoxylem points. Stems have a relatively narrow cortex of thin-walled cells that are commonly degraded, but the root cortex typically contains more robust, thick-walled cells. The stems bear helically inserted, elliptical–rhombic, ligulate microphylls. Roots possess an eccentrically positioned monarch vascular strand. Paurodendron stellatum is one of a very small number of anatomically preserved lycopsid axes described from the Gondwanan Permian and represents the first post-Carboniferous record of this genus. Based on dispersed vegetative remains, megaspores and microspores, herbaceous lycopsids, such as P. stellatum, appear to have been important understorey components of both low- and high-latitude mire forests of the late Palaeozoic.

  • 12. Mehlqvist, Kristina
    et al.
    Larsson, Kent
    Vajda, Vivi
    Swedish Museum of Natural History, Department of Paleobiology.
    Linking upper Silurian terrestrial and marine successions—Palynologicalstudy from Skåne, Sweden2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 202, p. 1-14Article in journal (Refereed)
    Abstract [en]

    We have performed a palynostratigraphic study on miospore assemblages from near-shore marine Silurian sed-imentary rocks of Skåne, southern Sweden. The material includes both drillcore (from Klintaborrningen 1 and Bjärsjölagårdborrningen 2) and outcrop samples from various localities in Skåne. Well- preserved spore assemblages were identified. Long ranging species with a global distribution dominate the spore assemblages, including Ambitisporites sp., Dyadospora sp., Laevolancis sp., and Tetrahedraletes sp. and complemented with key taxa including Emphanisporites neglectus, Hispanaediscus lamontii, Hispanaediscus verrucatus, Scylaspora scripta, Synorisporites libycus and Synorisporites tripapillatus. Based on biostratigraphical schemes for early land plant spores, the studied sedimentary rocks of the cores Klintaborrningen 1 and Bjärsjölagårdborrningen 2 are interpreted as late Silurian in age, spanning Ludlow to Přídolí. The spore assemblages are compared and correlated to marine fossil schemes including those of conodonts, chitinozoans, graptolites and tentaculitids. Additionally, relative abundance data of specific spore taxa have been used for correlation between the drillcores and the outcrops.

  • 13.
    Mehlqvist, Kristina
    et al.
    Department of Geology, Lund University, Sölvegatan 12, SE-223 62 Lund, Sweden.
    Steemans, Philippe
    Palaeogeobiology–Palaeobotany–Palaeopalynology, University of Liège, Allée du 6 Août, Bât. B-18, parking 40, B-4000 Liège 1, Belgium.
    Vajda, Vivi
    Swedish Museum of Natural History, Department of Paleobiology. Department of Geology, Lund University, Sweden.
    First evidence of Devonian strata in Sweden — A palynological investigation of Övedskloster drillcores 1 and 2, Skåne, Sweden2015In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 221, p. 144-159Article in journal (Refereed)
    Abstract [en]

    Palynological analyses were carried out on 50 samples from the Övedskloster 1 (Ö1) and 2 drillcores (Ö2), southern Sweden. The study revealed well-preserved palynological assemblages including 77 spore species in 28 genera, and some additional forms retained under open nomenclature. The spore assemblages are collectively dominated by trilete spores in terms of abundance and diversity and have been ascribed to two informal palynozones (Assemblage A and Assemblage B), based on the representation of spore taxa. The presence of the spore species Acinosporites salopiensis, Chelinohilates erraticus, Cymbohilates allenii, Cymbohilates allenii var. magnus, and Retusotriletes maccullockii indicates that the stratigraphic succession spans the Silurian–Devonian boundary (Přídolí–Lochkovian), and thus constitutes the first robust evidence of Devonian strata on the Swedish mainland. These results have implications for the age of fossil faunas (e.g. fish) from the samedeposits, previously dated as late Silurian. Palynofacies analyses reveal a shallowing-upward succession with nearshore marine marls at the base of the investigated core, grading into sandstones in conjunction with a decrease in the relative abundance of marine palynomorphs. The uppermost 70 m are mainly represented by red sandstones that are devoid of recognizable palynomorphs and host only phytodebris. We interpret this interval to represent predominantly paralic to fluvial deposits equivalent to facies represented in the Old Red Sandstone of Britain.

  • 14. Mendes, Mário Miguel
    et al.
    Dinis, Jorge
    Pais, João
    Friis, Else Marie
    Swedish Museum of Natural History, Department of Paleobiology.
    Vegetational composition of the Early Cretaceous Chicalhão flora (Lusitanian Basin, western Portugal) based on palynological and mesofossil assemblages. Review of Palaeobotany and Palynology2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 200, p. 65-81Article in journal (Refereed)
  • 15.
    Pott, Christian
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Guhl, Michael
    Fachbereich Geowissenschaften der Universität Bremen, Postfach 330440, DE-28334 Bremen, Germany.
    Lehmann, Jens
    Fachbereich Geowissenschaften der Universität Bremen, Postfach 330440, DE-28334 Bremen, Germany.
    The Early Cretaceous flora from the Wealden facies at Duingen, Germany2014In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 201, p. 75-105Article in journal (Refereed)
    Abstract [en]

    A middle latitude (c. 40° N) flora from the Lower Cretaceous of Duingen, north-western Germany, has been investigated. The newly collected fossils are preserved as impressions and compressions, some yielding cuticular details. Twenty-one species have been identified. The flora is dominated by ginkgophytes and conifers, whilst other groups such as Nilssoniales and Bennettitales represent minor portions of the vegetation. The bennettitaleans may be among the youngest of this group in Europe and one sphenophyte and a few ferns are also present. Two new species are described (viz. Nilssonia kurwia and Williamsonia joanwatsoniae) and one new combination (viz. Ptilophyllum aequale) is made. The composition of the flora is similar to that of other floras from the German Wealden, but exhibits certain differences from the English Wealden. The Duingen flora is compared to nearby and more remote Early Cretaceous floras of the Northern Hemisphere revealing a general need for revision of the German Wealden to improve correlation with more remote floras. The Duingen fossil flora derives from an established mixed temperate ginkgoalean–conifer forest with bennettites and Nilssoniales as minor, understorey components, most likely restricted to the moister coastal fringes of the forest.

  • 16.
    Pott, Christian
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Schmeissner, Stefan
    Dutsch, Guenter
    Van Konijnenburg-Van Cittert, Johanna HA
    Bennettitales in the Rhaetian flora of Wüstenwelsberg, Bavaria, Germany2016In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 232, p. 98-118Article in journal (Refereed)
    Abstract [en]

    The diverse bennettitalean plant remains from the Rhaetian of Wüstenwelsberg, Franconia, southern Germany,are described by means of macromorphological and epidermal anatomy; the study is part of the ongoing examinationof this recently excavated and excellently preserved fossil flora. The taxa identified include four species ofPterophyllum, one species of Anomozamites, two species of Nilssoniopteris and one species of Wielandiella withsterile leaves, bracts and ovulate reproductive organs. In addition, an enigmatic type of bennettitalean microsporangiateorgan has been obtained, remains of which from the Rhaetian of Greenland had been assigned toBennettistemon. However, the material from Wüstenwelsberg is much more complete and is assigned to a newgenus, viz. Welsbergia gen. nov., with its type species Welsbergia bursigera (Harris) comb. nov., based on theorgan's unique architecture. The microsporangiate organs are always exclusively associated with the sterile foliagePterophyllum aequale. Comparison of the flora fromWüstenwelsbergwith adjacent Rhaetian floras revealeddistinct local differences in the bennettitalean constitution, which are discussed in the light of palaeogeographyand plant dispersal patterns.

  • 17.
    Vajda, Vivi
    et al.
    Swedish Museum of Natural History, Department of Paleobiology. Department of Geology, Lund University, Sweden.
    McLoughlin, Stephen
    Swedish Museum of Natural History, Department of Paleobiology.
    Extinction and recovery patterns of the vegetation across the Cretaceous–Palaeogene boundary — a tool for unravelling the causes of the end-Permian mass-extinction2007In: Review of Palaeobotany and Palynology, ISSN 0034-6667, E-ISSN 1879-0615, Vol. 144, p. 99-112Article in journal (Refereed)
    Abstract [en]

    High-resolution palynofloral signatures through the Cretaceous–Palaeogene boundary succession show several features in common with the Permian–Triassic transition but there are also important differences. Southern Hemisphere Cretaceous–Palaeogene successions, to date studied at high resolution only in New Zealand, reveal a diverse palynoflora abruptly replaced by fungi-dominated assemblages that are in turn succeeded by low diversity suites dominated by fern spores, then gymnosperm- and angiosperm-dominated palynofloras of equivalent diversity to those of the Late Cretaceous. This palynofloral signature is interpreted to represent instantaneous (days to months) destruction of diverse forest communities associated with the Chicxulub impact event. The pattern of palynofloral change suggests wholesale collapse of vascular plant communities and short-term proliferation of saprotrophs followed by relatively rapid successional recovery of pteridophyte and seed–plant communities. The Permian–Triassic transition records global devastation of gymnosperm-dominated forests in a short zone synchronous with one or more peaks of the fungal/algal palynomorph Reduviasporonites. This zone is typically succeeded by assemblages rich in lycophyte spores and/or acritarchs. Higher in the succession, these assemblages give way to diverse palynofloras dominated by new groups of gymnosperms. Although different plant families were involved in the mass-extinctions, the general pattern of extinction and recovery is consistent between both events. The major difference is the longer duration for each phase of the Triassic recovery vegetation compared to that of the Paleocene. The protracted extinction-recovery succession at the Permian–Triassic boundary is incompatible with an instantaneous causal mechanism such as an impact of a celestial body but is consistent with hypotheses invoking extended environmental perturbations through flood-basalt volcanism and release of methane from continental shelf sediments.

1 - 17 of 17
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf