Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Adam, B.
    et al.
    Klawonn, I.
    Svedén, J.
    Bergkvist, J.
    Nahar, N.
    Walve, J.
    Littmann, S.
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Lavik, G.
    Kuypers, M.M.M.
    Ploug, H.
    N2-fixation, ammonium release, and N-transfer to the microbial and classical food web within a plankton community.2016In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 19, p. 450-459Article in journal (Refereed)
    Abstract [en]

    We investigated the role of N2-fixation by the colony-forming cyanobacterium, Aphanizomenon spp., for the plankton community and N-budget of the N-limited Baltic Sea during summer by using stable isotope tracers combined with novel secondary ion mass spectrometry, conventional mass spectrometry and nutrient analysis. When incubated with 15N2, Aphanizomenon spp. showed a strong 15N-enrichment implying substantial 15N2-fixation. Intriguingly, Aphanizomenon did not assimilate tracers of 15NH4+ from the surrounding water. These findings are in line with model calculations that confirmed a negligible N-source by diffusion-limited NH4+ fluxes to Aphanizomenon colonies at low bulk concentrations (<250 nm) as compared with N2-fixation within colonies. No N2-fixation was detected in autotrophic microorganisms <5 μm, which relied on NH4+ uptake from the surrounding water. Aphanizomenon released about 50% of its newly fixed N2 as NH4+. However, NH4+ did not accumulate in the water but was transferred to heterotrophic and autotrophic microorganisms as well as to diatoms (Chaetoceros sp.) and copepods with a turnover time of ~5 h. We provide direct quantitative evidence that colony-forming Aphanizomenon releases about half of its recently fixed N2 as NH4+, which is transferred to the prokaryotic and eukaryotic plankton forming the basis of the food web in the plankton community. Transfer of newly fixed nitrogen to diatoms and copepods furthermore implies a fast export to shallow sediments via fast-sinking fecal pellets and aggregates. Hence, N2-fixing colony-forming cyanobacteria can have profound impact on ecosystem productivity and biogeochemical processes at shorter time scales (hours to days) than previously thought.

  • 2. Eichner, M.J.
    et al.
    Klawonn, I.
    Wilson, S.T.
    Littmann, S.
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Church, M.J.
    Kuypers, M.M.M.M.
    Karl, D.M.
    Ploug, H.
    Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO22017In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 11, p. 1305-1317Article in journal (Refereed)
    Abstract [en]

    Gradients of oxygen (O2) and pH, as well as small-scale fluxes of carbon (C), nitrogen (N) and O2 were investigated under different partial pressures of carbon dioxide (pCO2) in field-collected colonies of the marine dinitrogen (N2)-fixing cyanobacterium Trichodesmium. Microsensor measurements indicated that cells within colonies experienced large fluctuations in O2, pH and CO2concentrations over a day–night cycle. O2 concentrations varied with light intensity and time of day, yet colonies exposed to light were supersaturated with O2 (up to ~200%) throughout the light period and anoxia was not detected. Alternating between light and dark conditions caused a variation in pH levels by on average 0.5 units (equivalent to 15 nmol l−1 proton concentration). Single-cell analyses of C and N assimilation using secondary ion mass spectrometry (SIMS; large geometry SIMS and nanoscale SIMS) revealed high variability in metabolic activity of single cells and trichomes of Trichodesmium, and indicated transfer of C and N to colony-associated non-photosynthetic bacteria. Neither O2 fluxes nor C fixation by Trichodesmium were significantly influenced by short-term incubations under different pCO2 levels, whereas N2fixation increased with increasing pCO2. The large range of metabolic rates observed at the single-cell level may reflect a response by colony-forming microbial populations to highly variable microenvironments.

    Download full text (pdf)
    fulltext
  • 3. Foster, Rachel A.
    et al.
    Tienken, Daniela
    Littmann, Sten
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Kuypers, Marcel M. M.
    White, Angelicque E.
    The rate and fate of N2 and C fixation by marine diatom-diazotroph symbioses2021In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370Article in journal (Refereed)
  • 4. Klawonn, Isabell
    et al.
    Bonaglia, Stefano
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Littmann, Sten
    Tienken, Daniela
    Kuypers, Marcel M. M.
    Brüchert, Volker
    Ploug, Helle
    Untangling hidden nutrient dynamics: rapid ammonium cycling and single-cell ammonium assimilation in marine plankton communities2019In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 13, no 8, p. 1960-1974Article in journal (Refereed)
    Abstract [en]

    Ammonium is a central nutrient in aquatic systems. Yet, cell-specific ammonium assimilation among diverse functional plankton is poorly documented in field communities. Combining stable-isotope incubations (15N-ammonium, 15N2 and 13C-bicarbonate) with secondary-ion mass spectrometry, we quantified bulk ammonium dynamics, N2-fixation and carbon (C) fixation, as well as single-cell ammonium assimilation and C-fixation within plankton communities in nitrogen (N)-depleted surface waters during summer in the Baltic Sea. Ammonium production resulted from regenerated (≥91%) and new production (N2-fixation, ≤9%), supporting primary production by 78–97 and 2–16%, respectively. Ammonium was produced and consumed at balanced rates, and rapidly recycled within 1 h, as shown previously, facilitating an efficient ammonium transfer within plankton communities. N2-fixing cyanobacteria poorly assimilated ammonium, whereas heterotrophic bacteria and picocyanobacteria accounted for its highest consumption (~20 and ~20–40%, respectively). Surprisingly, ammonium assimilation and C-fixation were similarly fast for picocyanobacteria (non-N2-fixing Synechococcus) and large diatoms (Chaetoceros). Yet, the population biomass was high for Synechococcus but low for Chaetoceros. Hence, autotrophic picocyanobacteria and heterotrophic bacteria, with their high single-cell assimilation rates and dominating population biomass, competed for the same nutrient source and drove rapid ammonium dynamics in N-depleted marine waters.

    Download full text (pdf)
    fulltext
  • 5. Stenow, Rickard
    et al.
    Robertson, Elizabeth K.
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Ploug, Helle
    Single cell dynamics and nitrogen transformations in the chain forming diatom Chaetoceros affinis2023In: The ISME Journal, ISSN 1751-7362, E-ISSN 1751-7370, Vol. 17, no 11, p. 2070-2078Article in journal (Refereed)
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf