Cetacean fossils have been recorded from middle and late Eocene deposits on Seymour Island since the beginning of the twentieth century and include fully aquatic Basilosauridae and stem Neoceti. Here, we report a small cetacean vertebra tentatively referred to as Neoceti from the late Eocene of Seymour Island. It shows a mosaic of traits, some of which are characteristic of early Neoceti (anteroposteriorly long transverse processes; a ventral keel on the ventral side of the centrum; thin pedicles of the neural arch), whereas others are shared with Basilosauridae (low-placed bases of the transverse processes). However, some traits are unique and may be autapomorphic: presence of separate prezygapophyses on the vertebra at the thoracic/lumbar boundary and a proportionally short centrum. Both traits imply a fast swimming style, which is characteristic of modern dolphins rather than Eocene cetaceans. Thus, this specimen can be identified as Neoceti indet., with some hypothetical odontocete affinities. Along with a few other Eocene whale taxa, it seems to be among the earliest known members of Neoceti on Earth. The finding of small and fast-swimming Neoceti in Antarctica also demonstrates early diversification of cetaceans and ecological niche partitioning by them dating back as early as the late Eocene.
The continental margin of Gondwana preserves a record of long-lived magmatism from the Andean Cordillera to Australia. The crustal blocks of West Antarctica form part of this margin, with Palaeozoic–Mesozoic magmatism particularly well preserved in the Antarctic Peninsula and Marie Byrd Land. Magmatic events on the intervening Thurston Island crustal block are poorly defined, which has hindered accurate correlations along the margin. Six samples are dated here using U-Pb geochronology and cover the geological history on Thurston Island. The basement gneisses from Morgan Inlet have a protolith age of 349±2 Ma and correlate closely with the Devonian–Carboniferous magmatism of Marie Byrd Land and New Zealand. Triassic (240–220 Ma) magmatism is identified at two sites on Thurston Island, with Hf isotopes indicating magma extraction from Mesoproterozoic-age lower crust. Several sites on Thurston Island preserve rhyolitic tuffs that have been dated at 182 Ma and are likely to correlate with the successions in the Antarctic Peninsula, particularly given the pre-break-up position of the Thurston Island crustal block. Silicic volcanism was widespread in Patagonia and the Antarctic Peninsula at ~ 183 Ma forming the extensive Chon Aike Province. The most extensive episode of magmatism along the active margin took place during the mid-Cretaceous. This Cordillera ‘flare-up’ event of the Gondwana margin is also developed on Thurston Island with granitoid magmatism dated in the interval 110–100 Ma.
Summer iron (Fe) fertilization in the Ross Sea has previously been observed in association with diatom productivity, lithogenic particles and excess Fe in the water column. This productivity event occurred during an early breakout of sea ice via katabatic winds, suggesting that aeolian dust could be an important source of lithogenic Fe required for diatom growth in the Ross Sea. Here we investigate the provenance of size-selected dust deposited on sea ice in McMurdo Sound, south-western (SW) Ross Sea. The isotopic signature of McMurdo Sound dust (0.70533< 87Sr/86Sr< 0.70915 and -1.1 < εNd(0) <3.45)confirms that dust is locally sourced from the McMurdo Sound debris bands and comprises a two-component mixture of McMurdo Volcanic Group and southern Victoria Land lithologies. In addition, the provenance of lithogenic sediment trapped in the water column was investigated, and the isotopic signature (εNd(0) =3.9, 87Sr/86Sr = 0.70434) is differentiated from long-range transported dust originating from South America and Australia. Elevated lithogenic accumulation rates in deeper sediment traps in the Ross Sea suggest that sinking articles in the water column cannot simply result from dust input at the surface. This discrepancy can be best explained by significant upwelling and remobilization of lithogenic Fe from the sea floor.