Change search
Refine search result
1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Presentation of the 2010 Charles Schuchert Award of the Paleontological Society to Philip C. J. Donoghue.2011In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Journal of Paleontology, Vol. 85, no 5, p. 1015-Article in journal (Refereed)
    Abstract [en]

    LADIES AND gentlemen, friends and colleagues, the winner of the 2010 Charles Schuchert Award is Professor Philip Donoghue of the University of Bristol. In the natural progression of our personal lives, the transition from young snot to old fart is so gradual that one tends not to recognize it, least of all in oneself. Most of us— those further along in their careers— have passed through the stage of young, promising paleontologist to become middleaged promising paleontologists. Not so Phil Donoghue. I first met him when he was a graduate student at the University of Leicester. We got into a discussion about the nature of conodonts and certain pet ideas of mine that I had published. Phil did not agree with me so he went down in my book as a young snot. Soon thereafter, he published a ground-breaking, paradigm-changing paper, together with Peter Forey and Dick Aldridge, on the phylogenetic position of conodonts. Now, I realized that it was I who was the old fart. Phil had demonstrated that he had skipped the young-and-promising stage. He was, and is, young and delivering. Most people who start working on conodonts tend to remain with them. There is something about that mouth apparatus and the way in which it grabs hold of you. But Phil quickly tore himself loose from its grip. He quickly demonstrated an unquenchable zeal in attacking central issues in evolutionary paleontology, such as the origin of microstructures in teeth, the origin of teeth in jaws, the origin of jaws in vertebrates, the origin of vertebrates among animals, the origin of animals in the biosphere, and so on. I fear he will not stop until he has solved the question of the origin of life, the universe, and everything else. The breadth of questions he has already addressed is one aspect of Phil’s work. The diversity of tools he brings to bear on them is another. There is a lot of grinding powder under his fingernails, and lots of devo in his evo. After a sabbatical at the University of Bath, where he seems to have broken every rule of the Sabbath, he came out as a full-fledged molecular biologist, with RNA libraries at his fingertips. He is at the forefront in marrying data from living organisms with that from fossil taxa in phylogenetic analyses. Recently, he came out in defense of the paraphyletic stem group with arguments such that I have high hopes for his post-Schuchert development. Yes, paraphyletic groups are much more interesting than the monophyletic dead-ends called clades, although Phil of course refuses to call them groups. When Phil and some colleagues published a paper in Nature on the Cambrian fossil embryo Markuelia (again showing me wrong on a central issue), it caught the eye of Marco Stampanoni, a physicist who works at the Swiss Light Source (SLS) synchrotron near Zu¨ rich, in Switzerland. Marco had been developing methods of X-ray microtomography, using SLS beamlines. He contacted Phil with a proposal to collaborate, and Phil contacted me. Now, our collaboration based on this revolutionary technique, with Phil at the forefront, has opened our eyes to a huge amount of information to which we did not have access only a few years ago. Taphonomy is like the weather, people speak about it, but few do anything about it. But if you neglect it, you are in deep peril. Phil is much more concerned about taphonomy than most colleagues I know, and he does something about it. He started a project with embryologist Rudy Raff to determine how bacteria go about decomposing embryos in ways such that they are upgraded to exquisite fossils. He is engaging many colleagues, post-docs and students in the investigation of these processes and their end results. As a result, we are gaining insight into how bacteria can invade, devour and faithfully replicate intracellular features, and how different populations of bacteria play different roles in the process. An intriguing observation has emerged from Phil’s taphonomic work with Mark Purnell. Taphonomic degradation tends to bring about a stemward slippage of taxa in their apparent phylogenetic relationships, on account of sequential disappearance of preserved apomorphies. The general significance of this observation has still to be tested, but its potential importance for the phylogenetic analysis of fossils is obvious. Phil is leading an amazingly diverse and successful program in paleontology at the University of Bristol, permeated by his holistic approach and addressing everything from organismbased paleontology to molecular biology. Molecular, organismic, orgiastic paleontology—that’s the realm of Phil Donoghue. Mr. President, please hand the Schuchert Award for 2010 over to Phil. He thoroughly deserves it.

  • 2.
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Presentation of the 2010 Paleontological Society Medal to Bruce Runnegar.2011In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Journal of Paleontology, Vol. 85, no 5, p. 1012-Article in journal (Refereed)
    Abstract [en]

    Ladies and gentlemen, friends and colleagues, the 2010 Paleontological Society Medal is awarded to Professor Bruce Runnegar of the University of California at Los Angeles. Preparing for this presentation, I got hold of a list of Bruce’s invited lectures, given during the past ten years. There are 86 titles on almost as many subjects. I will mention what these presentations were about, so you can get an impression of this Renaissance mind: Carbon isotopes and ocean evolution; Precambrian–Cambrian stratigraphy; Molecular evolution and the fossil record; Ediacaran organisms; Life on Mars; Oxygen and metazoan evolution; Orbital dynamics of the Earth–Moon system; Snowball Earth; Multiplated mollusks; Mass-independent fractionation of sulfur; Biomineralization; The Cambrian Explosion; Geobiology in the Archean; Cross-calibration of geological and astronomical time scales; Origins of biological complexity; Astrobiology of the Earth; Astrobiology of everything else; The Acraman impact of the Ediacaran; Biosignatures in ancient rocks; Microbial metabolism in the Early Archean. Now, most people can waffle about almost anything. A good teacher can read up on such topics and deliver useful lectures on them to students. But, as you will know if you are the least bit familiar with Bruce’s work, these are nearly all topics in fields where he has made startlingly innovative and pioneering contributions. Some would say that his most important contributions are missing from this list, such as molecular paleobiology, for example, or—if you prefer more tangible fossils—the systematics and evolution of Cambrian and Permian mollusks. But what is represented on the list is sufficient to document several brilliant careers in science: Bruce broke new ground in understanding the biomineralization processes of early mollusks by working with natural phosphatic replicas of the now vanished crystals of various species of calcium carbonate. He published a seminal set of papers on the evolution of the earliest mollusks, together with his longtime friend John Pojeta. And, as a leader of the astrobiology movement, Bruce has not only inspired everyone to start looking at life in a universal context, he has also brought his visions to life as Director of NASA’s Astrobiology Institute. It was in this context that Bruce was formally transformed from a U.S.-based Aussie to a full-fledged Australian– American (which is, I think, the politically correct term). In reference to molecular paleontology, I have some personal recollections. Bruce and I both have backgrounds as editors of paleontological journals. Bruce founded and for several years edited the successful Australasian journal Alcheringa, which is still going strong. Some of my first interactions with Bruce occurred in the 1970s, when he submitted manuscripts to Lethaia, of which I was an editor. One of my early forays was to question the number of authors of one of these manuscripts. I knew that no less than five authors of a single paper was excessive and confronted Bruce with this. It may have been the first time I really annoyed him, as he politely told me not to forget to turn my brain on, next time I wrote to him. Well, recently I saw an article in Nature with 230 authors, at which point it finally became clear to me that Bruce was ahead of his time. But back in those times I was a wee bit miffed, so when Bruce sent me a manuscript in which he estimated geological ages of major animal lineages using molecular clock techniques, I knew I could get my revenge. I sent the paper out for review by the sharpest molecular biologists of the day, smugly expecting to receive patronizing comments about paleontologists who should stick to their snail shells rather than pretending to be real scientists. No such luck. The reviews that came in were extravagant in their praise of the paper. Published in 1982, it predated by almost 15 years the avalanche of contributions that later came out on this topic. As usual, Bruce was ahead of the pack, but when others reached the spot where he had stood 15 years earlier, he wasn’t there anymore. Discrepancies between molecular and fossil data for a while seemed insurmountable, not to mention the discrepancies between different sets of molecular data and different sorts of analyses. But Bruce had inspired a bright set of younger biologists and paleontologists to refine their calculations. When the dust settled, one of those with whom Bruce had shared his spark, Kevin Peterson, was able to show that there is no significant conflict between the dates provided by fossils and by molecules. But I mentioned molecular paleontology. In 1986, Bruce published a seminal paper with just that title. In it he expressed his credo, thus: ‘‘palaeontologists should use all available sources of information to understand the evolution of life and its effect on the planet.’’ These are not empty words; they present a formidable challenge. Like all splendid visions, they stake out a direction rather than a goal. That it is possible to pursue this vision we see from the example set by this year’s Schuchert Award winner, Phil Donoghue, who together with Kevin Peterson and Roger Summons wrote a stimulating twenty-first century follow-up to Bruce’s earlier paper. But the foremost example is Bruce Runnegar himself. Here is a taste of the way in which his productive mind works. In 1982, Bruce used the anatomy and hypothesized physiology of the Ediacaran fossil Dickinsonia to estimate constraints for ambient oxygen levels in the Ediacaran atmosphere. This paper is much cited, and geochemists are only now catching up with him, developing geochemical proxies to test the hypothesis that a rising oxygen level was a trigger for the Cambrian Explosion, or, as Bruce so aptly put it, that one ‘‘ingredient, as in most explosives, may well have been a strong oxidising agent.’’ Finally, consider another example. In 1998, Bruce published a cladistic analysis of glaciogenic sediments, testing and corroborating the hypothesis that there were only two major Neoproterozoic glaciations, a result that still seems to stand. Who but Bruce would have thought of such a preposterous idea, using cladistics to resolve a stratigraphical conundrum? Bruce Runnegar has, over the years, formed collegial bonds with many scientists. The many younger people inspired by him include Phil Donoghue, now standing on Bruce’s shoulders. Bruce himself has stood on the shoulders of other giants, as he is quick to acknowledge. But, like Sir Isaac Newton, he has no reason to be bashful about his success, and I don’t think he is. The Paleontological Society Medal was really made for Bruce Runnegar, so please, Mr. President, give it to him!

  • 3. Claybourn, Thomas M.
    Skovsted, Christian
    Swedish Museum of Natural History, Department of Paleobiology.
    Topper, Timothy
    Swedish Museum of Natural History, Department of Paleobiology.
    Holmer, Lars, E.
    Brock, Glenn, A.
    Mollusks from the upper Shackleton Limestone (Cambrian Series 2), Central Transantarctic Mountains, East Antarctica2019In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 93, no 3, p. 437-459Article in journal (Refereed)
    Abstract [en]

    An assemblage of Cambrian Series 2, Stages 3–4, conchiferan mollusks from the Shackleton Limestone, Transantarctic Mountains, East Antarctica, is formally described and illustrated. The fauna includes one bivalve, one macromollusk, and 10 micromollusks, including the first description of the species Xinjispira simplex Zhou and Xiao, 1984 outside North China. The new fauna shows some similarity to previously described micromollusks from lower Cambrian glacial erratics from the Antarctic Peninsula. The fauna, mainly composed of steinkerns, is relatively low diversity, but the presence of diagnostic taxa, including helcionelloid Davidonia rostrata (Zhou and Xiao, 1984), bivalve Pojetaia runnegari Jell, 1980, cambroclavid Cambroclavus absonus Conway Morris in Bengtson et al., 1990, and bradoriid Spinospitella coronata Skovsted et al., 2006, as well as the botsfordiid brachiopod Schizopholis yorkensis (Ushatinskaya and Holmer in Gravestock et al., 2001), in the overlying Holyoake Formation correlates the succession to the Dailyatia odyssei Zone (Cambrian Stages 3–4) in South Australia

  • 4.
    Friis, Else Marie
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Marone, Federica
    Pedersen, Kaj Raunsgaard
    Crane, Peter Robert
    Stampanoni, Marco
    Three-dimensional visualisation of fossil flowers, fruits, seeds and other plant remains using synchrotron radiation X-ray tomographic microscopy (SRXTM): New insights into Cretaceous plant diversity2014In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 88, p. 684-701Article in journal (Refereed)
  • 5. Hartstone-Rose, Adam
    et al.
    Werdelin, Lars
    Swedish Museum of Natural History, Department of Paleobiology.
    De Ruiter, D. J.
    Berger, Lee R.
    Churchill, S. E.
    The Plio-Pleistocene ancestor of wild dogs, Lycaon sekowei n. sp.2010In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 84, p. 299-308Article in journal (Refereed)
    Abstract [en]

    African wild dogs (Lycaon pictus) occupy an ecological niche characterized by hypercarnivory and cursorial hunting. Previous interpretations drawn from a limited, mostly Eurasian fossil record suggest that the evolutionary shift to cursorial hunting preceded the emergence of hypercarnivory in the Lycaon lineage. Here we describe 1.9–1.0 ma fossils from two South African sites representing a putative ancestor of the wild dog. The holotype is a nearly complete maxilla from Coopers Cave, and another specimen tentatively assigned to the new taxon, from Gladysvale, is the most nearly complete mammalian skeleton ever described from the Sterkfontein Valley, Gauteng, South Africa. The canid represented by these fossils is larger and more robust than are any of the other fossil or extant sub-Saharan canids. Unlike other purported L. pictus ancestors, it has distinct accessory cusps on its premolars and anterior accessory cuspids on its lower premolars–a trait unique to Lycaon among living canids. However, another hallmark autapomorphy of L. pictus, the tetradactyl manus, is not found in the new species; the Gladysvale skeleton includes a large first metacarpal. Thus, the anatomy of this new early member of the Lycaon branch suggests that, contrary to previous hypotheses, dietary specialization appears to have preceded cursorial hunting in the evolution of the Lycaon lineage. We assign these specimens to the taxon Lycaon sekowei n. sp.

  • 6. Jenkins, Robert
    et al.
    Kaim, Andrzej
    Hikida, Yoshinori
    Kiel, Steffen
    Swedish Museum of Natural History, Department of Paleobiology.
    Four new species of the Jurassic to Cretaceous seep-restricted bivalve Caspiconcha and implications for the history of chemosynthetic communities2018In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 92, p. 596-610Article in journal (Refereed)
  • 7.
    Kiel, Steffen
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Taviani, Marco
    Institute of Marine Sciences, Italian National Research Council, Via Gobetti 101, 40129 Bologna, Italy.
    Chemosymbiotic bivalves from Miocene methane-seep carbonates in Italy2017In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 91, p. 444-466Article in journal (Refereed)
    Abstract [en]

    Eleven species of chemosymbiotic bivalves are reported from middle to late Miocene methane seep deposits (‘Calcari a Lucina’) in the Italian Apennines, including seven new species and one new genus. The new species are Bathymodiolus (s.l.) moroniae and B. (s.l.) miomediterraneus among the Bathymodiolinae and Archivesica aharoni, A. apenninica, A. strigarum, and ‘Pliocardia’ italica among the Vesicomyidae; specimens from the middle Miocene of Deruta are reported as Archivesica aff. aharoni. Samiolus iohannesbaptistae new genus new species is introduced for an unusual mytilid with a commarginally ribbed surface, which might be the first non-bathymodiolin mytilid obligate to the seep environment. The two large lucinid species from which these deposits derived their informal name ‘Calcari a Lucina’ are identified as Meganodontia hoernea (Des Moulins, 1868) and Lucinoma perusina (Sacco, 1901). With Chanellaxinus sp., we report the first thyasirid from a Neogene deep-water seep deposit in Italy and the first fossil occurrence of this genus.

  • 8. Manthi, Fredrick Kyalo
    et al.
    Brown, Francis H.
    Plavcan, Michael J.
    Werdelin, Lars
    Swedish Museum of Natural History, Department of Paleobiology.
    Gigantic lion, Panthera leo, from the Pleistocene of Natodomeri, eastern Africa2017In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337Article in journal (Refereed)
    Abstract [en]

    The partial skull of a lion from Natodomeri, northwest Kenya is described. The Natodomeri sites are correlated with Member I of the Kibish Formation, dated to between 195 ka and ca. 205 ka. The skull is remarkable for its very great size, equivalent to the largest cave lions (Panthera spelaea  [Goldfuss, 1810]) of Pleistocene Eurasia and much larger than any previously known lion from Africa, living or fossil. We hypothesize that this individual represents a previously unknown population or subspecies of lion present in the late Middle and Late Pleistocene of eastern Africa rather than being an indication of climate-driven size increase in lions of that time. This raises questions regarding the extent of our understanding of the pattern and causes of lion evolution in the Late Pleistocene.

  • 9. Pan, Bing
    et al.
    Topper, Timothy, P.
    Skovsted, Christian
    Swedish Museum of Natural History, Department of Paleobiology.
    Miao, Lanyun
    Li, Guoxiang
    Occurrence of Microdictyon from the lower Cambrian Xinji Formationalong the southern margin of the North China Platform2018In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 91, no 1, p. 59-70Article in journal (Refereed)
    Abstract [en]

    Disarticulated net-like plates of the lobopod Microdictyon had a near cosmopolitan distribution from the early to middle Cambrian, but are yet to be documented from the North China Platform. Here we report isolated plates of Microdictyon from the lower Cambrian Xinji Formation (Stage 4, Series 2) of the North China Platform, extending the paleogeographic distribution of Microdictyon in the early Cambrian. The plates of Microdictyon from the Xinji Formation are similar to those of other species established on the basis of isolated plates, but do bear some new characters, such as mushroom-shaped nodes with a single inclined platform-like apex, and an upper surface that displays radial lines. However, the plates documented here are left under open nomenclature due to an inadequate knowledge of intraspecific and ontogenetic variation and low specimen numbers. Through comparison of the node shapes of the isolated plates of different Microdictyon species, we consider that low mushroom-shaped nodes could be a primitive and conservative character of Microdictyon, while tall mushroom-shaped nodes may be derived character. Subtle differences in shape and number of node apices may also represent intraspecific or ontogenetic variation.

  • 10.
    Skovsted, Christian
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Brock, Glenn, A.
    Holmer, Lars, E.
    Topper, Timothy, P.
    Larsson, Cecilia, M.
    The early Cambrian tommotiid Kulparina rostrata from South Australia2016In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 89, no 6, p. 920-932Article in journal (Refereed)
    Abstract [en]

    The early Cambrian (Terreneuvian, Stage 2) tommotiid Kulparina rostrata Conway Morris and Bengtson in Bengtson et al., 1990 is revised. The pyramidal sclerites of K. rostrata are shown to be bilaterally symmetrical and homologues of the symmetrical S1 sclerites of Paterimitra pyramidalis Laurie, 1986. The scleritome of K. rostrata is also shown to include flattened asymmetrical sclerites that were originally described under the name Eccentrotheca guano Bengtson in Bengtson et al., 1990 and which correspond to the L-sclerites of Paterimitra. A modified tubular scleritome and a sessile filter-feeding mode of life is envisaged for Kulparina rostrata.

  • 11.
    Skovsted, Christian
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Topper, Timothy, P.
    Mobergellans from the early Cambrian of Greenland and Labrador — new morphological details and implications for the functional morphology of mobergellans2018In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 92, no 1, p. 71-79Article in journal (Refereed)
    Abstract [en]

    New morphological features of the mobergellan Discinella micans (Billings, 1871) from the lower Cambrian (Stage 4) of North-East Greenland and southern Labrador are described. The new features include: (1) the morphology of the larval shell, which is shown to be cap-shaped, sub-circular and with impressions of the internal muscle attachment scars; (2) a range of unusual shell deformations (changes in growth direction resulting in thickened shells, partial detachment of shell laminae and subsequent regrowth, internal projections of shell material increasing the depth of the shell by up to 150%, disturbances and irregular fusion of muscle scars). In addition we provide new details about the variability in number and shape of the anteriormost internal muscle scars which often fuse and may vary in number from one to three (resulting in 9 to 11 scars in total). Together the new observations provide additional strength to the hypothesis that mobergellan shells represent opercula of an as yet unknown tubular organism.

  • 12.
    Topper, Timothy P.
    et al.
    Geological Museum, Copenhagen.
    Skovsted, Christian
    Swedish Museum of Natural History, Department of Paleobiology.
    Ahlberg, Per
    Lunds Universitet.
    A Bradoriid and Brachiopod Dominated Shelly Fauna from the Furongian (Cambrian) of Västergötland, Sweden2013In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 87, no 1, p. 69-83Article in journal (Refereed)
    Abstract [en]

    A small assemblage of shelly fossils, dominated by the brachiopod Treptotreta jucunda and the bradoriid arthropod Mongolitubulus aspermachaera new species is described from a Furongian limestone of Västergötland, south-central Sweden. Mongolitubulus aspermachaera is represented in the assemblage by individual valves and numerous, ornamented spines. Valves and spines share identical ornament and microstructure leaving no doubt that the isolated spines were once attached to the bradoriid valves. Mongolitubulus aspermachaera adds to the increasing list of spinose Cambrian bradoriid arthropods, and Mongolitubulidae new family is erected here to incorporate the genera Mongolitubulus, Tubuterium and Spinospitella. Mongolitubulus aspermachaera represents the youngest member of the new family and supplements the biodiversity of bradoriids in the Furongian, an interval when bradoriid diversity is considered to be very much on the decline. The brachiopod Treptotreta jucunda described predominantly from the ‘middle' to ‘late' Cambrian of Australia is here documented for the first time from outside Gondwana, dramatically extending the biogeographical range of the species. Other elements of the faunal assemblage include typical Baltic Furongian representatives, such as the trilobite Parabolina, the agnostoid Agnostus and the phosphatocopids Hesslandona and Vestrogothia.

  • 13.
    Werdelin, Lars
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Lewis, Margaret E.
    Carnivora from the South Turkwel hominid site, northern Kenya2000In: Journal of Paleontology, ISSN 0022-3360, E-ISSN 1937-2337, Vol. 74, p. 1173-1180Article in journal (Refereed)
    Abstract [en]

    A small collection of carnivoran fossils from the South Turkwel hominid site is described. The fauna is composed of Megantereon ekidoit new species, Homotherium sp., Crocuta cf. dietrichi, cf. Pachycrocuta sp., Canis new species A., cf. Civettictis sp., Viverridae or Herpestidae indet., and Lutrinae indet. The record of Megantereon and Canis, as well as Pachycrocuta and Civettictis, if these genera are identified correctly, represents the earliest occurrences of their respective taxa in Africa. These specimens suggest a relatively rapid reorganization of the carnivore guild some time around 3.5 Ma, followed by a longer period of transition to a fauna more comparable in composition to the modern one.

1 - 13 of 13
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf