Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Biel, Christina
    et al.
    Subias, Ignacio
    Billström, Kjell
    Swedish Museum of Natural History, Department of Geology.
    Acevedo, Rogelio
    Multi-isotope approach for the identification of metal and fluid sources of the Arroyo Rojo VMS deposit, Tierra del Fuego, Argentina2016In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360Article in journal (Refereed)
  • 2.
    Billström, Kjell
    et al.
    Swedish Museum of Natural History, Department of Geology.
    Broman, Curt
    Larsson, Alfred
    Schersten, Anders
    Schmitt, Melanie
    Swedish Museum of Natural History, Department of Geology.
    Sandstone-hosted Pb-Zn deposits along the margin of the Scandinavian Caledonides and their possible relationship with nearby Pb-Zn vein mineralisation2020In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360Article in journal (Refereed)
    Abstract [en]

    Numerous sandstone-hosted Pb-Zn deposits occur along the present-day erosional front of the eastern Scandinavian Caledonides. The largest deposit is Laisvall (64.3 Mt at 4.0% Pb, 0.6% Zn and 9.0g/t Ag) and since mineralisations generally share similar characteristics (reminding of both SEDEX and MVT-style) the term Laisvall-type has often been used. Typically, mineralised zones occur along sedimentary bedding and consist of disseminated galena and sphalerite and lesser amounts of calcite, fluorite, baryte, pyrite and sericite forming a cement that fill interstitial pores in Neoproterozoic/Eocambrian (e.g. Laisvall) to Cambrian (e.g. Vassbo) sandstones.

    Deposits occur both in autochtonous and allochtonous sedimentary rocks, and a broad consensus exists about their epigenetic nature, their spatial relationships to syn-sedimentary faults and that ore fluids have scavenged metals from the crystalline basement. However, the detailed ore depositional history and the timing of ore deposition have remained more controversial. New analyses aimed to complement earlier Rb-Sr data (crush-leach technique using sphalerite) fail to support a published three-point isochron age of 467±5 Ma. This is probably due to syn-ore mixing between fluids carrying isotopically variable strontium and inherited problems to analyse sphalerite grains that strictly were deposited from a single ore pulse. Tentatively, strontium in the ores originate from a mix of components derived from the basement, seawater and the local sedimentary host sequences. The lead component has highly radiogenic compositions, and data define sub-parallel linear arrays interpreted to essentially represent mixing of isotopically different types of lead released from regional basement rocks.

    There are obvious similarities when comparing features of deposits representing two Pb-Zn ore styles, the sandstone-hosted dissemination and the fracture-controlled mineralisation in the granite-dominated basement occurring further east of the Caledonian margin. These include low temperature brines responsible for mineral deposition, the mineralogy and the nature of Rb-Sr and Pb isotope data. We suggest that these types of mineralisation have a common origin and time of emplacement, but it is elusive to propose a well-constrained age. Nonetheless, field observations and other evidence suggest that ore formation is due to large-scale fluid flow triggered by the transition from an extensional to compressional tectonic setting at about 500 Ma. Connected to this mid-Cambrian stage was the development of syn-sedimentary faults and fractures in the basement and in overlying consolidated sandstones. 

  • 3. Garcia, Victor B.
    et al.
    Schutesky, Maria Emilia
    Oliveira, Claudinei G.
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Huhn, Sergio R.B.
    Augustin, Claudia T.
    The Neoarchean GT-34 Ni deposit, Carajás mineral Province, Brazil: An atypical IOCG-related Ni sulfide mineralization2020In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360, Vol. 127Article in journal (Refereed)
    Abstract [en]

    The GT-34 deposit, located 12 km to the SW of the Sossego copper–gold mine in the Carajás Province, northern Brazil, represents an unusual Ni sulfide mineralization. The deposit occurs along a NE-SW-trending sub-vertical shear zone marked by progressive Mg-alkalic alteration zones, predominantly hosted in granitic and locally in granodioritic to tonalitic orthogneisses. Initial alteration zones result in unique scapolite-orthopyroxene assemblage, which is partially preserved within pervasive hornblende-chlorapatite ± plagioclase replacement zones. Nickel mineralization occurs mainly as matrix-supported breccias characterized by a pentlandite-pyrrhotite-rich matrix and rounded fragments chiefly of hornblende and chlorapatite. Irregular stockworks and net textured veins containing chalcopyrite-pentlandite are less common. Phlogopite ± talc ± actinolite alteration and late-stage veinlets crosscut the previous alteration zones and the mineralization. The phlogopite ± talc ± actinolite alteration occurs as irregular veins and chalcopyrite-pyrrhotite-magnetite are commonly observed where such alteration intersects the Ni mineralization. Late-stage veinlets are represented by K feldspar-epidote-chlorite-calcite and quartz-albite-chlorite-calcite-epidote veins, both containing minor amounts of millerite, pyrite and F-OH-apatite. High-resolution SIMS U-Pb zircon geochronology obtained for the GT-34 deposit revealed an age of 2828 ± 4 Ma for zircon grains inherited from the host orthogneisses. The timing of the mineralization altered zircon grains from the scapolite-orthopyroxene and phlogopite ± talc ± actinolite alteration zones, is attributed to an age interval between 2751 and 2720 Ma. Although poorly constrained, the geochronological data corroborate a Neoarchean age for the GT-34 Ni mineralization, similar to that of other IOCG deposits in the Carajás Province and coeval with the bimodal magmatism in the area. The atypical orthopyroxene-marialite mineral chemistry support a metasomatic crystallization at high temperatures (>700 °C), low aH2O (<0.5) and pressures between 5 and 7 kbar. Hypersaline fluids, as the ones described for the IOCG deposits in Carajás at such PxT conditions, would enable the orthopyroxene-marialite crystallization, as supported by experimental studies available in the literature. Mineralogical and geochemical considerations on the nature of the Ni sulfide mineralization points toward a metasomatic origin, feasible with the predicted P-T-fluid scenario for the hydrothermal alteration. Such conditions raise the initial temperature and pressure estimates of the IOCG metasomatic alteration by at least 200 °C and pressure up to 7 kbar, making it the hottest and probably deepest IOCG-related metasomatic alteration known to date for Carajás.

  • 4.
    Martinsson, Olof
    et al.
    Luleå Tekniska Universitet.
    Billström, Kjell
    Swedish Museum of Natural History, Department of Geology.
    Broman, Curt
    Stockholms Universitet.
    Weihed, Pär
    Luleå Tekniska Universitet.
    Wanhainen, Christina
    Luleå Tekniska Universitet.
    Metallogeny of the Northern Norrbotten Ore Province, northern Fennoscandian Shield with emphasis on IOCG and apatite-iron ore deposits2016In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360, article id doi: 10.1016/j.oregeorev.2016.02.011Article in journal (Refereed)
    Abstract [en]

    The Northern Norrbotten Ore Province in northernmost Sweden includes the type localities for Kiruna-type apatite iron deposits and has been the focus for intense exploration and research related to Fe oxide-Cu-Aumineralisation during the last decades. Several different types of Fe-oxide and Cu-Au±Fe oxide mineralisationoccur in the region and include: stratiform Cu±Zn±Pb±Fe oxide type, iron formations (including BIF´s), Kiruna-type apatite iron ore, and epigenetic Cu±Au±Fe oxide type which may be further subdivided into different styles of mineralisation, some of them with typical IOCG (Iron Oxide-Copper-Gold) characteristics. Generally, the formation of Fe oxide±Cu±Au mineralisation is directly or indirectly dated between ~2.1 and 1.75 Ga, thus spanning about 350 m.y. of geological evolution.The current paper will present in more detail the characteristics of certain key deposits, and aims to put the global concepts of Fe-oxide Cu-Au mineralisations into a regional context. The focus will be on iron deposits and various types of deposits containing Fe-oxides and Cu-sulphides in different proportions which generally have some characteristics in common with the IOCG style. In particular, ore fluid characteristics (magmatic versus non-magmatic) and new geochronological data are used to link the ore-forming processes with the overall crustal evolution to generate a metallogenetic model. Rift bounded shallow marine basins developed at ~2.1-2.0 Ga following a long period of extensional tectonics within the Greenstone-dominated, 2.5-2.0 Ga Karelian craton. The ~1.9-1.8 Ga Svecofennian Orogen is characterised by subduction and accretion from the southwest. An initial emplacement of calc-alkaline magmas into ~1.9 Ga continental arcs led to the formation of the Haparanda Suite and the Porphyrite Group volcanic rocks. Following this early stage of magmatic activity, and separated from it by the earliest deformation and metamorphism, more alkali-rich magmas of the Perthite Monzonite Suite and the Kiirunavaara Group volcanic rocks were formed at ~1.88 Ga. Subsequently, partial melting of the middle crust produced large volumes of~1.85 and 1.8 Ga S-type granites in conjunction with subduction related A-/I-type magmatism and associated deformation and metamorphism.

    In our metallogenetic model the ore formation is considered to relate to the geological evolution as follows. Iron formations and a few stratiform sulphide deposits were deposited in relation to exhalative processes in rift bounded marine basins. The iron formations may be sub-divided into BIF- (banded iron formations) and Mg-rich types, and at several locations these types grade into each other. There is no direct age evidence to constrain the deposition of iron formations, but stable isotope data and stratigraphic correlations suggest a formation within the 2.1-2.0 Ga age range. The major Kiruna-type ores formed from an iron-rich  magma (generally with a hydrothermal over-print) and are restricted to areas occupied by volcanic rocks of the Kiirunavaara Group. It is suggested here that 1.89-1.88 Ga tholeiitic magmas underwent magma liquid immiscibility reactions during fractionation and interaction with crustal rocks, including metaevaporites, generating more felsic magmatic rocks and Kiruna-type iron deposits. A second generation of this ore type, with a minor economic importance, appears to have been formed about 100 Ma later. The epigenetic Cu-Au±Fe oxide mineralisation formed during two stages of the Svecofennian evolution in association with magmatic and metamorphic events and crustal-scale shear zones. During the first stage of mineralisation, from 1.89-1.88 Ga, intrusion-related (porphyry-style) mineralisation and Cu-Au deposits of IOCG affinity formed from magmatichydrothermal systems, whereas vein-style and shear zone deposits largely formed at c. 1.78 Ga. The large range of different Fe oxide and Cu-Au±Fe oxide deposits in Northern Norrbotten is associated with various alteration systems, involving e.g. scapolite, albite, K feldspar, biotite, carbonates, tourmaline and sericite. However, among the apatite iron ores and the epigenetic Cu-Au±Fe oxide deposits the character of mineralization, type of ore- and alteration minerals and metal associations are partly controlled by stratigraphic position (i.e. depth of emplacement). Highly saline, NaCl+CaCl2 dominated fluids, commonly also including a CO2-rich population, appear to be a common characteristic feature irrespective of type and age of deposits. Thus, fluids with similar characteristics appear to have been active during quite different stages of the geological evolution. Ore fluids related to epigenetic Cu-Au±Fe oxides display a trend with decreasing salinity, which probably was caused by mixing with meteoric water. Tentatively, this can be linked to different Cu-Au ore paragenesis, including an initial (magnetite)-pyrite-chalcopyrite stage, a main chalcopyrite stage, and a late bornite stage. Based on the anion composition and the Br/Cl ratio of ore related fluids bittern brines and metaevaporites (including scapolite) seem to be important sources to the high salinity hydrothermal systems generating most of the deposits in Norrbotten. Depending on local conditions and position in the crust these fluids generated a variety of Cu-Au deposits. These include typical IOCG-deposits (Fe-oxides and Cu-Au are part of the same process), IOCG of iron stone type (pre-existing Fe-oxide deposit with later addition of Cu-Au), IOCG of reduced type (lacking Fe-oxides due to local reducing conditions) and vein-style Cu-Au deposits. From a strict genetic point of view, IOCG deposits that formed from fluids of a mainly magmatic origin should be considered to be a different type than those deposits associated with mainly non-magmatic fluids. The former tend to overlap with porphyry systems, whereas those of a mainly non-magmatic origin overlap with sediment hosted Cu-deposits with respect to their origin and character of the ore fluids.

    Download full text (pdf)
    fulltext
  • 5. Molnár, F.
    et al.
    Mänttäri, I.
    O'Brien, H.
    Lahaye, Y.
    Pakkanen, L.
    Johanson, B.
    Käpyaho, A.
    Sorjonen-Ward, P.
    Whitehouse, Martin J.
    Swedish Museum of Natural History, Department of Geology.
    Sakellaris, G.
    Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, eastern Finland2016In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360, Vol. 77, p. 133-162Article in journal (Refereed)
    Abstract [en]

    The Hattu schist belt is located in the western part of the Archaean Karelian domain of the Fennoscandian Shield. The orogenic gold deposits with Au–Bi–Te geochemical signatures are hosted by NE–SW, N–S and NW–SE oriented shear zones that deform 2.76–2.73 Ga volcanic and sedimentary sequences, as well as 2.75–2.72 Ga tonalite–granodiorite intrusions and diverse felsic porphyry dykes. Mo–W mineralization is also present in some tonalite intrusions, both separate from, and associated with Au mineralization. Somewhat younger, unmineralized leucogranite intrusions (2.70 Ga) also intrude the belt. Lower amphibolite facies peak metamorphism at 3–5 kbar pressures and at 500–600 °C temperatures affected the belt at around 2.70 Ga and post-date hydrothermal alteration and ore formation. In this study, we investigated the potential influence of magmatic-hydrothermal processes on the formation of orogenic gold deposits on the basis of multiple stable isotope (B, S, Cu) studies of tourmaline and sulphide minerals by application of in situ SIMS and LA ICP MS analytical techniques.

    Crystal chemistry of tourmaline from a Mo–W mineralization hosted by a tonalite intrusion in the Hattu schist belt is characterized by Fe3 +–Al3 +-substitution indicating relatively oxidizing conditions of hydrothermal processes. The range of δ11B data for this kind of tourmaline is from − 17.2‰ to − 12.2‰. The hydrothermal tourmaline from felsic porphyry dyke swith gold mineralization has similar crystal chemistry (e.g. dravite–povondraite compositional trend with Fe3 +–Al3 + substitution) and δ11B values between − 19.0‰ and − 9.6‰. The uvite–foitite compositional trend and δ11B ‰ values between − 24.1% and − 13.6% characterize metasomatic–hydrothermal tourmaline from the metasediment-hosted gold deposits. Composition of hydrothermal vein-filling and disseminated tourmaline from the gold-bearing shear zones in metavolcanic rocks is transitional between the felsic intrusion and metasedimentary rock hosted hydrothermal tourmaline but the range of average boron isotope data is essentially identical with that of the metasediment-hosted tourmaline. Rock-forming (magmatic) tourmaline from leucogranite has δ11B values between − 14.5‰ and − 10.8‰ and the major element composition is similar to that of the metasediment-hosted tourmaline.

    The range of δ34SVCDT values measured in pyrite, chalcopyrite and pyrrhotite is from − 9.1 to + 8.5‰, which falls within the typical range of sulphur isotope data for Archaean orogenic gold deposits. In the Hattu schist belt, positive δ34SVCDT values characterize metasediment-hosted gold ores with sulphide parageneses dominated by pyrrhotite and arsenopyrite. The δ34SVCDT values are both positive and negative in ore mineral parageneses within felsic intrusive rocks in which variable amounts of pyrrhotite are associated with pyrite. Purely negative values were only recorded from the pyrite-dominated gold mineralization within metavolcanic units. Therefore the shift of δ34SVCDT values to the negative values reflects precipitation of sulphide minerals from relatively oxidizing fluids. The range of measured δ65CuNBS978 values from chalcopyrite is from − 1.11 to 1.19‰. Positive values are common for mineralization in felsic intrusive rocks and negative values are more typical for deposits confined to metasedimentary rocks. Positive and negative δ65CuNBS978 values occur in the ores hosted by metavolcanic rocks. There is no correlation between sulphur and copper isotope data obtained in the same chalcopyrite grains.

    Evaluation of sulphur and boron isotope data together and comparisons with other Archaean orogenic gold provinces supports the hypothesis that the metasedimentary rocks were the major sources of sulphur and boron in the orogenic gold deposits in the Hattu schist belt. Variations in major element and boron isotope compositions in tourmaline, as well as in the δ34SVCDT values in sulphide minerals are attributed to localized involvement of magmatic fluids in the hydrothermal processes. The results of copper isotope studies indicate that local sources of copper in orogenic gold deposits may potentially be recognized if the original, distinct signatures of the sources have not been homogenized by widespread interaction of fluids with a large variety of rocks and provided that local chemical variations have been too small to trigger changes in the oxidation state of copper during hydrothermal processes.

  • 6. Subías, I.
    et al.
    Fanlo, I.
    Hajjar, Z.
    Gervilla, F.
    Billström, Kjell
    Swedish Museum of Natural History, Department of Geology.
    Isotopic constraints on the age and source of ore-forming fluids of the Bou Azzer arsenide ores (Morocco)2022In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360, Vol. 143, p. 104769-104769, article id 104769Article in journal (Refereed)
    Abstract [en]

    The Bou Azzer district in Morocco has a long mining history since the beginning of the XXst century during which it has become the only world producer of Co from primary, hydrothermal Co arsenide ores. Orebodies are structurally controlled, and mainly distributed along fault contacts between Cryogenian ophiolite-related serpentinite bodies and intrusive quartz diorite or, locally, ophiolitic gabbros or Ediacaran volcanic rocks. Ore formation took place through a multi-stage mineralizing process that included an early stage composed by gold, quartz, chlorite, muscovite and calcite, followed by the main arsenide and sulfarsenide stage (subdivided into three substages, IIa: Ni-rich, Co ores, IIb: Co-Fe ores and IIc: Fe-Co ores), and ending with an epithermal stage characterized by the precipitation of sulfides along with quartz and calcite. Field relations and most previous geochronologic dating pointed to a post Pan-African age of ore formation, mainly coincident with the Hercynian orogeny.

    The isotopic study presented in this paper includes S, Pb, Rb/Sr and Sm/Nd data of a set of ore mineral samples from three deposits (Aghbar, Tamdrost and Aït Ahmane), as well as of regional samples representative of the different lithologies occurring in the Bou Azzer area. The isotope data set was completed with S isotope analyses of arsenide and sulfarsenide minerals from five ore deposits (Filon 7/5, Aghbar, Tamdrost, Ightem and Aït-Ahmane) and of some whole-rock regional samples. Results show that ores formed during multi-episodic hydrothermal events connected with hercynian reactivation of Devonian-Carboniferous faults, supporting previous geochronologic dating. The obtained Pb, Sr, Nd and S isotopic signatures of ore minerals and regional rocks further show that ophiolite-related lithologies became isotopically modified by interaction with crustal material and afterwards acted as the main source of ore-forming elements. Nevertheless, isotopic data do not fully concur with such a simple scenario but are quite consistent with a rather complex interpretation based on multi-source origin of some elements and isotopes scavenged from a number of isotopically different lithologies both from the inferred basement and the volcanic and sedimentary cover.

  • 7. Subías, Isubias
    et al.
    Fanlo, Isabel
    Billström, Kjell
    Swedish Museum of Natural History, Department of Geology.
    Ore-forming timing of polymetallic-fluorite low temperature veins from Central Pyrenees: a Pb, Nd and Sr isotope perspective2015In: Ore Geology Reviews, ISSN 0169-1368, E-ISSN 1872-7360, Vol. 70, p. 241-251Article in journal (Refereed)
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf