Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Patino, Jairo
    et al.
    Bisang, Irene
    Swedish Museum of Natural History, Department of Botany.
    Hedenäs, Lars
    Swedish Museum of Natural History, Department of Botany.
    Dirkse, Gerard
    Bjarnason, Agust H.
    Ah-Peng, Claudine
    Vanderpoorten, Alain
    Baker’s law and the island syndromes in bryophytes2013In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745, Vol. 101, p. 1245-1255Article in journal (Refereed)
    Abstract [en]

    1. The evolution of island syndromes has long served as a model to understand the mechanisms accounting for phenotypic differentiation. Combining literature data with actual observations, we determine whether typical syndromes such as the loss of dispersal power and the bias towards selfcompatibility s law) apply to vagile organisms, using bryophytes as a model.

    2. The life-history traits (LHTs) observed in oceanic island floras were statistically different from those observed on continents, evidencing the evolution of island syndromes. In contrast, LHTs of continental and continental island floras were similar, pointing to differences in migration intensity between continents, continental islands and oceanic islands.

    3. The proportion of bisexual species was significantly higher on oceanic islands than on continents. A significant proportion of species that are unisexual or bisexual on continents shifted towards exclusive bisexuality on oceanic islands, suggesting that Baker’s law applies to bryophytes. The underlying mechanisms, however, probably differ from in situ selection for selfing.

    4. The proportion of species producing specialized asexual diaspores, which are assumed to play a role in short-distance dispersal (SDD), was higher on oceanic islands than on continents. The proportion of species producing spores, which are involved in long-distance dispersal (LDD), exhibited the reverse trend, suggesting a shift in the prevalent reproductive strategy to favour SDD on oceanic islands. Approximately 50% of the species, however, maintained the ability to produce sporophytes on oceanic islands, and the relative frequency of fertile shoots within collections of four model species was even higher on islands than on continents.

    5. Synthesis. Bryophytes exhibit typical island syndromes, indicating that migration rates between oceanic islands and continents are not sufficient to prevent the effects of genetic drift and contradicting the view that the sea does not impede migration in the group. Significant shifts in life-history traits (LHTs) towards increased production of specialized asexual diaspores and decreased sporophyte production on oceanic islands indeed point to a global loss of long-distance dispersal (LDD) ability. The maintenance of traits characteristic for LDD in a large number of species has, however, substantial consequences for our understanding of island plant evolution, and in particular, for our vision of islands as evolutionary dead ends.

  • 2.
    van Zuijlen, Kristel
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Kassel, Marlene
    State Institute for Environment Baden-Württemberg, Karlsruhe, Germany.
    Dorrepaal, Ellen
    Climate Impacts Research Centre, Umeå University, Abisko, Sweden.
    Lett, Signe
    Department of Biology, Terrestrial Ecology Section, University of Copenhagen, Copenhagen, Denmark.
    Frost damage measured by electrolyte leakage in subarctic bryophytes increases with climate warming2024In: Journal of Ecology, ISSN 0022-0477, E-ISSN 1365-2745Article in journal (Refereed)
    Abstract [en]

    Observed climate change in northern high latitudes is strongest in winter, but still relatively little is known about the effects of winter climate change on tundra ecosystems. Ongoing changes in winter climate and snow cover will change the intensity, duration and frequency of frost events. Bryophytes form a major component of northern ecosystems but their responses to winter climate changes are largely unknown. Here, we studied how changes in overall winter climate and snow regime affect frost damage in three common bryophyte taxa that differ in desiccation tolerance in a subarctic tundra ecosystem. We used a snow manipulation experiment where bryophyte cores were transplanted from just above the tree line to similar elevation (i.e. current cold climate) and lower elevation (i.e. near-future warmer climate scenario) in Abisko, Sweden. Here, we measured frost damage in shoots of Ptilidium ciliare, Hylocomium splendens and Sphagnum fuscum with the relative electrolyte leakage (REL) method, during late winter and spring in two consecutive years. We hypothesized that frost damage would be lower in a milder climate (low site) and higher under reduced snow cover and that taxa from moister habitats with assumed low desiccation tolerance would be more sensitive to lower temperature and thinner snow cover than those from drier and more exposed habitats. Contrary to our expectations, frost damage was highest at low elevation, while the effect of snow treatment differed across sites and taxa. At the high site, frost damage was reduced under snow addition in the taxon with the assumed lowest desiccation tolerance, S. fuscum. Surprisingly, frost damage increased with mean temperature in the bryophyte core of the preceding 14 days leading up to REL measurements and decreased with higher frost degree sums, that is, was highest in the milder climate at the low site.

    Synthesis: Our results imply that climate warming in late winter and spring increases frost damage in bryophytes. Given the high abundance of bryophytes in tundra ecosystems, higher frost damage could alter the appearance and functioning of the tundra landscape, although the short and long-term effects on bryophyte fitness remain to be studied.

1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf