Change search
Refine search result
1234 1 - 50 of 192
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alerstam, Thomas
    et al.
    Rosén, Mikael
    Bäckman, Johan
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Hellgren, Olof
    Flight speeds among bird species: allometric and phylogenetic effects.2007In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 5, no 8, p. e197-Article in journal (Refereed)
    Abstract [en]

    Flight speed is expected to increase with mass and wing loading among flying animals and aircraft for fundamental aerodynamic reasons. Assuming geometrical and dynamical similarity, cruising flight speed is predicted to vary as (body mass)(1/6) and (wing loading)(1/2) among bird species. To test these scaling rules and the general importance of mass and wing loading for bird flight speeds, we used tracking radar to measure flapping flight speeds of individuals or flocks of migrating birds visually identified to species as well as their altitude and winds at the altitudes where the birds were flying. Equivalent airspeeds (airspeeds corrected to sea level air density, Ue) of 138 species, ranging 0.01-10 kg in mass, were analysed in relation to biometry and phylogeny. Scaling exponents in relation to mass and wing loading were significantly smaller than predicted (about 0.12 and 0.32, respectively, with similar results for analyses based on species and independent phylogenetic contrasts). These low scaling exponents may be the result of evolutionary restrictions on bird flight-speed range, counteracting too slow flight speeds among species with low wing loading and too fast speeds among species with high wing loading. This compression of speed range is partly attained through geometric differences, with aspect ratio showing a positive relationship with body mass and wing loading, but additional factors are required to fully explain the small scaling exponent of Ue in relation to wing loading. Furthermore, mass and wing loading accounted for only a limited proportion of the variation in Ue. Phylogeny was a powerful factor, in combination with wing loading, to account for the variation in Ue. These results demonstrate that functional flight adaptations and constraints associated with different evolutionary lineages have an important influence on cruising flapping flight speed that goes beyond the general aerodynamic scaling effects of mass and wing loading.

  • 2. Aliabadian, Mansour
    et al.
    Kaboli, Mohammad
    Foerschler, Marc I.
    Nijman, Vincent
    Chamani, Atefeh
    Tillier, Annie
    Prodon, Roger
    Pasquet, Eric
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Zuccon, Dario
    Erratum to: Convergent evolution of morphological and ecological traits in the open-habitat chat complex (Aves, Muscicapidae: Saxicolinae) (vol 65, pg 35, 2012)2012In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 65, no 3, p. 1017-1019Article in journal (Refereed)
  • 3. Aliabadian, Mansour
    et al.
    Kaboli, Mohammad
    Förschler, Marc I
    Nijman, Vincent
    Chamani, Atefeh
    Tillier, Annie
    Prodon, Roger
    Pasquet, Eric
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Zuccon, Dario
    Convergent evolution of morphological and ecological traits in the open-habitat chat complex (Aves, Muscicapidae: Saxicolinae).2012In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 65, no 1, p. 35-45Article in journal (Refereed)
    Abstract [en]

    Open-habitat chats (genera Myrmecocichla, Cercomela, Oenanthe and relative) are a morphologically and ecologically cohesive group of genera with unclear phylogenetic relationships. They are distributed mostly in open, arid and/or rocky habitats of Africa and Eurasia. Here, we present the most comprehensive molecular phylogenetic analysis of this group to date, with a complete taxon sampling at the species level. The analysis, based on a multilocus dataset including three mitochondrial and three nuclear loci, allows us to elucidate the phylogenetic relationships and test the traditional generic limits. All genera are non-monophyletic, suggesting extensive convergence on similar plumage patterns in unrelated species. While the colour pattern appear to be a poor predictor of the phylogenetic relationships, some of the ecological and behavioural traits agree relatively well with the major clades. Following our results, we also propose a revised generic classification for the whole group.

  • 4. Alstrom, Per
    et al.
    Olsson, Urban
    Rasmussen, Pamela C.
    Yao, Cheng-Te
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Sundberg, Per
    Morphological, vocal and genetic divergence in the Cettia acanthizoides complex (Aves: Cettiidae)2007In: Zoological Journal of the Linnean Society, ISSN 0024-4082, E-ISSN 1096-3642, Vol. 149, no 3, p. 437-452Article in journal (Refereed)
  • 5. Alström, Per
    et al.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Olsson, Urban
    Sundberg, Per
    Phylogeny and classification of the avian superfamily Sylvioidea.2006In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 38, no 2, p. 381-97Article in journal (Refereed)
    Abstract [en]

    Sylvioidea is one of the three superfamilies recognized within the largest avian radiation, the parvorder Passerida. In the present study, which is the first taxon-dense analysis of the Sylvioidea based on sequence data (nuclear myoglobin intron II and mitochondrial cytochrome b gene), we investigate the interrelationships among the four "sylvioid" clades found by previous workers, as well as the relationships within the largest of these clades. The nuclear and mitochondrial loci estimate basically the same phylogeny, with minor differences in resolution. The trees based on myoglobin and the combined data identify a strongly supported clade that includes the taxa previously allocated to Sylvioidea, except for Sitta (nuthatches), Certhia (treecreepers), Parus (tits), Remiz (penduline tits), Troglodytes and Campylorhynchus (wrens), Polioptila (gnatcatchers), and Regulus (crests/kinglets); this clade also comprises larks, which have previously been placed in the superfamily Passeroidea. We refer to this clade as Sylvioidea. This clade is further divided into 10 main, well-supported clades, which we suggest form the basis for a revised classification.

  • 6. Alström, Per
    et al.
    Fregin, Silke
    Norman, Janette A
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Christidis, Les
    Olsson, Urban
    Multilocus analysis of a taxonomically densely sampled dataset reveal extensive non-monophyly in the avian family Locustellidae.2011In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 58, no 3, p. 513-26Article in journal (Refereed)
    Abstract [en]

    The phylogeny of most of the species in the avian passerine family Locustellidae is inferred using a Bayesian species tree approach (Bayesian Estimation of Species Trees, BEST), as well as a traditional Bayesian gene tree method (MrBayes), based on a dataset comprising one mitochondrial and four nuclear loci. The trees inferred by the different methods agree fairly well in topology, although in a few cases there are marked differences. Some of these discrepancies might be due to convergence problems for BEST (despite up to 1×10(9) iterations). The phylogeny strongly disagrees with the current taxonomy at the generic level, and we propose a revised classification that recognizes four instead of seven genera. These results emphasize the well known but still often neglected problem of basing classifications on non-cladistic evaluations of morphological characters. An analysis of an extended mitochondrial dataset with multiple individuals from most species, including many subspecies, suggest that several taxa presently treated as subspecies or as monotypic species as well as a few taxa recognized as separate species are in need of further taxonomic work.

  • 7. Alström, Per
    et al.
    Höhna, Sebastian
    Gelang, Magnus
    Swedish Museum of Natural History, Department of Zoology.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Olsson, Urban
    Non-monophyly and intricate morphological evolution within the avian family Cettiidae revealed by multilocus analysis of a taxonomically densely sampled dataset.2011In: BMC Evolutionary Biology, E-ISSN 1471-2148, Vol. 11, p. 352-Article in journal (Refereed)
    Abstract [en]

    BACKGROUND: The avian family Cettiidae, including the genera Cettia, Urosphena, Tesia, Abroscopus and Tickellia and Orthotomus cucullatus, has recently been proposed based on analysis of a small number of loci and species. The close relationship of most of these taxa was unexpected, and called for a comprehensive study based on multiple loci and dense taxon sampling. In the present study, we infer the relationships of all except one of the species in this family using one mitochondrial and three nuclear loci. We use traditional gene tree methods (Bayesian inference, maximum likelihood bootstrapping, parsimony bootstrapping), as well as a recently developed Bayesian species tree approach (*BEAST) that accounts for lineage sorting processes that might produce discordance between gene trees. We also analyse mitochondrial DNA for a larger sample, comprising multiple individuals and a large number of subspecies of polytypic species.

    RESULTS: There are many topological incongruences among the single-locus trees, although none of these is strongly supported. The multi-locus tree inferred using concatenated sequences and the species tree agree well with each other, and are overall well resolved and well supported by the data. The main discrepancy between these trees concerns the most basal split. Both methods infer the genus Cettia to be highly non-monophyletic, as it is scattered across the entire family tree. Deep intraspecific divergences are revealed, and one or two species and one subspecies are inferred to be non-monophyletic (differences between methods).

    CONCLUSIONS: The molecular phylogeny presented here is strongly inconsistent with the traditional, morphology-based classification. The remarkably high degree of non-monophyly in the genus Cettia is likely to be one of the most extraordinary examples of misconceived relationships in an avian genus. The phylogeny suggests instances of parallel evolution, as well as highly unequal rates of morphological divergence in different lineages. This complex morphological evolution apparently misled earlier taxonomists. These results underscore the well-known but still often neglected problem of basing classifications on overall morphological similarity. Based on the molecular data, a revised taxonomy is proposed. Although the traditional and species tree methods inferred much the same tree in the present study, the assumption by species tree methods that all species are monophyletic is a limitation in these methods, as some currently recognized species might have more complex histories.

  • 8. Alström, Per
    et al.
    Jønsson, Knud A.
    Fjeldså, Jon
    Ödeen, Anders
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Dramatic niche shifts and morphological change in two insular bird species2015In: Royal Society Open Science, ISSN 2054-5703, Vol. 2, article id 140364Article in journal (Refereed)
    Abstract [en]

    Colonizations of islands are often associated with rapid morphological divergence. We present two previously unrecognized cases of dramatic morphological change and niche shifts in connection with colonization of tropical forest-covered islands. These evolutionary changes have concealed the fact that the passerine birds madanga, Madanga ruficollis, from Buru, Indonesia, and São Tomé shorttail, Amaurocichla bocagii, from São Tomé, Gulf of Guinea, are forest-adapted members of the family Motacillidae (pipits and wagtails). We show that Madanga has diverged mainly in plumage, which may be the result of selection for improved camouflage in its new arboreal niche, while selection pressures for other morphological changes have probably been weak owing to preadaptations for the novel niche. By contrast, we suggest that Amaurocichla's niche change has led to divergence in both structure and plumage.

    Download full text (pdf)
    fulltext
  • 9. Alström, Per
    et al.
    Zhang, R
    Zhao, M
    Wang, J
    Zhu, X
    Gwee, C.H.
    Hao, Y
    Ohlson, Jan I
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Jia, C
    Prawiradilaga, D M
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Lei, Fumin
    Olsson, Urban
    Complete species-level phylogeny of the leaf warbler (Aves: Phylloscopidae) radiation2018In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 126, p. 141-152Article in journal (Refereed)
  • 10.
    Bachmann, Lutz
    et al.
    Natural History Museum University of Oslo Oslo Norway.
    Beermann, Jan
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany;Helmholtz Institute for Functional Marine Biodiversity at Oldenburg University Oldenburg Germany.
    Brey, Thomas
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany;Helmholtz Institute for Functional Marine Biodiversity at Oldenburg University Oldenburg Germany;University of Bremen Bremen Germany.
    de Boer, Hugo J.
    Natural History Museum University of Oslo Oslo Norway.
    Dannheim, Jennifer
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany.
    Edvardsen, Bente
    Department of Biosciences, Section for Aquatic Biology and Toxicology University of Oslo Oslo Norway.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Holston, Kevin C.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics. Department of Bioinformatics and Genetics The Swedish Museum of Natural History Stockholm Sweden.
    Johansson, Veronika A.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics. Department of Bioinformatics and Genetics The Swedish Museum of Natural History Stockholm Sweden.
    Kloss, Paul
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany;Helmholtz Institute for Functional Marine Biodiversity at Oldenburg University Oldenburg Germany.
    Konijnenberg, Rebecca
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany.
    Osborn, Karen J.
    Department of Invertebrate Zoology Smithsonian National Museum of Natural History Washington DC USA.
    Pappalardo, Paula
    Department of Invertebrate Zoology Smithsonian National Museum of Natural History Washington DC USA.
    Pehlke, Hendrik
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany.
    Piepenburg, Dieter
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany;Helmholtz Institute for Functional Marine Biodiversity at Oldenburg University Oldenburg Germany;Institute for Ecosystem Research, Kiel University Kiel Germany.
    Struck, Torsten H.
    Natural History Museum University of Oslo Oslo Norway.
    Sundberg, Per
    Department of Marine Sciences Gothenburg University Gothenburg Sweden.
    Markussen, Stine Svalheim
    Norwegian Biodiversity Information Centre Trondheim Norway.
    Teschke, Katharina
    Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Functional Ecology Bremerhaven Germany;Helmholtz Institute for Functional Marine Biodiversity at Oldenburg University Oldenburg Germany.
    Vanhove, Maarten P. M.
    Centre for Environmental Sciences, Research Group Zoology: Biodiversity & Toxicology Hasselt University Diepenbeek Belgium.
    The role of systematics for understanding ecosystem functions: Proceedings of the Zoologica Scripta Symposium, Oslo, Norway, 25 August 20222023In: Zoologica Scripta, ISSN 0300-3256, E-ISSN 1463-6409, Vol. 52, no 3, p. 187-214Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 11.
    Bachmann, Lutz
    et al.
    University of Oslo Natural History Museum P.O. Box 1172 Blindern NO 0318 Oslo Norway.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Sundberg, Per
    University of Gothenburg Department of Marine Sciences P.O. Box 463 SE 40530 Gothenburg Sweden.
    Systematics and biodiversity research in the era of genomics2016In: Zoologica Scripta, ISSN 0300-3256, E-ISSN 1463-6409, Vol. 45, no S1, p. 3-4Article in journal (Other academic)
  • 12. Bakker, Freek T
    et al.
    Antonelli, Alexandre
    Clarke, Julia A
    Cook, Joseph A
    Edwards, Scott V
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Faurby, Søren
    Ferrand, Nuno
    Gelang, Magnus
    Gillespie, Rosemary G
    Irestedt, Martin
    Lundin, Kennet
    Larsson, Ellen
    Matos-Maravi­, Pavel
    Muller, Johannes
    von Proschwitz, Ted
    Roderick, George K
    Schliep, Alexander
    Wahlberg, Niklas
    Wiedenhoeft, John
    Källersjö, Mari
    The Global Museum: natural history collections and the future of evolutionary science and public education2020In: PeerJ, E-ISSN 2167-8359, ISSN 2167-8359, Vol. 8, article id e8225Article in journal (Refereed)
    Abstract [en]

    Natural history museums are unique spaces for interdisciplinary research and educational innovation. Through extensive exhibits and public programming and by hosting rich communities of amateurs, students, and researchers at all stages of their careers, they can provide a place-based window to focus on integration of science and discovery, as well as a locus for community engagement. At the same time, like a synthesis radio telescope, when joined together through emerging digital resources, the global community of museums (the 'Global Museum') is more than the sum of its parts, allowing insights and answers to diverse biological, environmental, and societal questions at the global scale, across eons of time, and spanning vast diversity across the Tree of Life. We argue that, whereas natural history collections and museums began with a focus on describing the diversity and peculiarities of species on Earth, they are now increasingly leveraged in new ways that significantly expand their impact and relevance. These new directions include the possibility to ask new, often interdisciplinary questions in basic and applied science, such as in biomimetic design, and by contributing to solutions to climate change, global health and food security challenges. As institutions, they have long been incubators for cutting-edge research in biology while simultaneously providing core infrastructure for research on present and future societal needs. Here we explore how the intersection between pressing issues in environmental and human health and rapid technological innovation have reinforced the relevance of museum collections. We do this by providing examples as food for thought for both the broader academic community and museum scientists on the evolving role of museums. We also identify challenges to the realization of the full potential of natural history collections and the Global Museum to science and society and discuss the critical need to grow these collections. We then focus on mapping and modelling of museum data (including place-based approaches and discovery), and explore the main projects, platforms and databases enabling this growth. Finally, we aim to improve relevant protocols for the long-term storage of specimens and tissues, ensuring proper connection with tomorrow's technologies and hence further increasing the relevance of natural history museums.

    Download full text (pdf)
    fulltext
  • 13.
    Barani-Beiranvand, Hossein
    et al.
    Dept of Biology, Faculty of Science, Ferdowsi Univ. of Mashhad, Iran Mashhad, Khorasan-e Razavi; Mashhad Iran.
    Aliabadian, Mansour
    Dept of Biology, Faculty of Science, Ferdowsi Univ. of Mashhad, Iran Mashhad, Khorasan-e Razavi; Mashhad Iran;Research Dept of Zoological Innovation (RDZI), Inst. of Applied Zoology, Ferdowsi Univ. of Mashhad; Mashhad Iran.
    Irestedt, Martin
    Dept of Bioinformatics and Genetics, Swedish Museum of Natural History; Stockholm Sweden.
    Qu, Yanhua
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
    Darvish, Jamshid
    Research Dept of Rodentology, Inst. of Applied Zoology, Ferdowsi Univ. of Mashhad; Mashhad Iran.
    Székely, Tamás
    Dept of Biology and Biochemistry, Univ. of Bath; Bath UK.
    Van Dijk, René E.
    Dept of Animal and Plant Sciences, Univ. of Sheffield; Sheffield UK.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Phylogeny of penduline tits inferred from mitochondrial and microsatellite genotyping2017In: Journal of Avian Biology, ISSN 0908-8857, E-ISSN 1600-048X, Vol. 48, no 7, p. 932-940Article in journal (Refereed)
  • 14. Batalha-Filho, Henrique
    et al.
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Fjeldså, Jon
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Silveira, Luis F
    Miyaki, Cristina Y
    Molecular systematics and evolution of the Synallaxis ruficapilla complex (Aves: Furnariidae) in the Atlantic Forest.2013In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 67, no 1, p. 86-94Article in journal (Refereed)
    Abstract [en]

    The Neotropical Synallaxis ruficapilla complex is endemic to the Atlantic Forest and is comprised of three species: S. ruficapilla, S. whitneyi, and S. infuscata. This group is closely related to the Synallaxis moesta complex that occurs in the Andes, Tepuis, and Guianan shield. Here we used mitochondrial and nuclear gene sequences to infer the phylogeny and the time of diversification of the S. ruficapilla and S. moesta complexes. We also included samples of an undescribed population of Synallaxis that resembles other populations of the S. ruficapilla complex. Our results showed that different geographical lineages within the S. ruficapilla complex are reciprocally monophyletic, but the northern form (S. infuscata) grouped with an Andean taxon. This suggests that at least two lineages of this group independently colonized the Atlantic Forest. Specimens of the undescribed population formed a monophyletic clade with deep divergence. Estimated diversification dates were within the late Pliocene to Pleistocene (2.75-0.16 million of years ago). This suggests that at this time there was a higher connectivity between habitats in the rugged landscapes of the circum-Amazonian bioregions. The observed Pleistocene diversification within the Atlantic Forest is congruent in space and time with studies of other co-distributed organisms, and may be associated with climate changes and tectonic activity during this period.

  • 15. Batalha-Filho, Henrique
    et al.
    Pessoa, Rodrigo O
    Fabre, Pierre-Henri
    Fjeldså, Jon
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Silveira, Luís F
    Miyaki, Cristina Y
    Phylogeny and historical biogeography of gnateaters (Passeriformes, Conopophagidae) in the South America forests.2014In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 79, p. 422-432Article in journal (Refereed)
    Abstract [en]

    We inferred the phylogenetic relationships, divergence time and biogeography of Conopophagidae (gnateaters) based on sequence data of mitochondrial genes (ND2, ND3 and cytb) and nuclear introns (TGFB2 and G3PDH) from 45 tissue samples (43 Conopophaga and 2 Pittasoma) representing all currently recognized species of the family and the majority of subspecies. Phylogenetic relationships were estimated by maximum likelihood and Bayesian inference. Divergence time estimates were obtained based on a Bayesian relaxed clock model. These chronograms were used to calculate diversification rates and reconstruct ancestral areas of the genus Conopophaga. The phylogenetic analyses support the reciprocal monophyly of the two genera, Conopophaga and Pittasoma. All species were monophyletic with the exception of C. lineata, as C. lineata cearae did not cluster with the other two C. lineata subspecies. Divergence time estimates for Conopophagidae suggested that diversification took place during the Neogene, and that the diversification rate within Conopophaga clade was highest in the late Miocene, followed by a slower diversification rate, suggesting a diversity-dependent pattern. Our analyses of the diversification of family Conopophagidae provided a scenario for evolution in Terra Firme forest across tropical South America. The spatio-temporal pattern suggests that Conopophaga originated in the Brazilian Shield and that a complex sequence of events possibly related to the Andean uplift and infilling of former sedimentation basins and erosion cycles shaped the current distribution and diversity of this genus.

  • 16. Bergh, Stefan
    et al.
    Blidmo, Roger
    Carlsson, Anders
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Olsson, Eva
    Åkerlund, Agneta
    Sörmländsk stenåldersforskning1987Report (Other academic)
  • 17. Cai, T L
    et al.
    Cibois, Alice
    Alström, Per
    Moyle, R G
    Kennedy, J D
    Shao, S M
    Zhang, R Y
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Gelang, Magnus
    Qu, Yanhua
    Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
    Lei, Fumin
    Fjeldså, Jon
    Near-complete phylogeny and taxonomic revision of the world’s babblers (Aves: Passeriformes)2019In: Molecular Phylogenetics and Evolution, ISSN 1055-7903, E-ISSN 1095-9513, Vol. 130, p. 346-356Article in journal (Refereed)
  • 18. Chen, Yilin
    et al.
    Ge, Deyan
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Song, Gang
    Wen, Zhixin
    Luo, Xu
    Yang, Qisen
    Lei, Fumin
    Qu, Yanhua
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
    Alpine burrow-sharing mammals and birds show similar population-level climate change risks2023In: Nature Climate Change, ISSN 1758-678X, E-ISSN 1758-6798, Vol. 13, no 9, p. 990-996Article in journal (Refereed)
  • 19. Chen, Yilin
    et al.
    Jiang, Zhiyong
    Fan, Ping
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Song, Gang
    Luo, Xu
    Lei, Fumin
    Qu, Yanhua
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics. Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
    The combination of genomic offset and niche modelling provides insights into climate change-driven vulnerability2022In: Nature Communications, E-ISSN 2041-1723, Vol. 13, no 1, article id 4821Article in journal (Refereed)
  • 20. Chiappe, Luis M
    et al.
    Lamb, James P
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    New enantiornithine bird from the marine Upper Cretaceous of Alabama2002In: Journal of Vertebrate Paleontology, ISSN 0272-4634, E-ISSN 1937-2809, Vol. 22, no 1, p. 170-174Article in journal (Refereed)
  • 21. Christidis, Les
    et al.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Fjeldså, Jon
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Ohlson, Jan I
    The suboscine passerines2020In: The Largest Avian Radiation / [ed] Fjeldså, J., Christidis, L. & Ericson, P.G.P, Barcelona: Lynx Edicions , 2020, p. 65-65Chapter in book (Other academic)
  • 22. Cibois, Alice
    et al.
    Gelang, Magnus
    Alström, Per
    Pasquet, Eric
    Fjeldså, Jon
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Olsson, Urban
    Comprehensive phylogeny of the laughingthrushes and allies (Aves, Leiothrichidae), and a proposal for a revised taxonomy2018In: Zoologica Scripta, ISSN 0300-3256, E-ISSN 1463-6409, Vol. 47, p. 428-440Article in journal (Refereed)
  • 23. Cibois, Alice
    et al.
    Vallotton, L
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Blom, Mozes P.K.
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Genetic and radiographic insights into the only known mounted specimen of Kangaroo Island Emu2020In: Revue suisse de zoologie, ISSN 0035-418X, Vol. 126, p. 209-217Article in journal (Refereed)
  • 24. Cros, Emilie
    et al.
    Ng, Elize Y. X.
    Oh, Rachel R. Y.
    Tang, Qian
    Benedick, Suzan
    Edwards, David P.
    Tomassi, Suzanne
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Ericson, Per G. P.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Rheindt, Frank E.
    Fine‐scale barriers to connectivity across a fragmented South‐East Asian landscape in six songbird species2020In: Evolutionary Applications, E-ISSN 1752-4571, Vol. 13, no 5, p. 1026-1036Article in journal (Refereed)
    Abstract [en]

    Habitat  fragmentation  is  a major  extinction  driver.  Despite  dramatically  increas-ing fragmentation across the globe, its specific impacts on population connectivityacross species with differing life histories remain difficult to characterize, let alonequantify. Here, we investigate patterns of population connectivity in six songbirdspecies from Singapore, a highly fragmented tropical rainforest island. Using massivepanels of genome-wide single nucleotide polymorphisms across dozens of samplesper species, we examined population genetic diversity, inbreeding, gene flow andconnectivity among species along a spectrum of ecological specificities. We found ahigher resilience to habitat fragmentation in edge-tolerant and forest-canopy speciesas compared to forest-dependent understorey insectivores. The latter exhibited lev-els of genetic diversity up to three times lower in Singapore than in populations fromcontiguous forest elsewhere. Using dense genomic and geographic sampling, weidentified individual barriers such as reservoirs that effectively minimize gene flowin sensitive understorey birds, revealing that terrestrial forest species may exhibitlevels of sensitivity to fragmentation far greater than previously expected. This studyprovides a blueprint for conservation genomics at small scales with a view to iden-tifying preferred locations for habitat corridors, flagging candidate populations forrestocking with translocated individuals and improving the design of future reserves.

    Download full text (pdf)
    fulltext
  • 25.
    Dalen, Love
    et al.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Lagerholm, Vendela K.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Nylander, Johan A. A.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Barton, Nick
    Bochenski, Zbigniew M.
    Tomek, Teresa
    Rudling, David
    Ericson, Per G. P.
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics. Swedish Museum of Natural History, Research Division.
    Irestedt, Martin
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Stewart, John R.
    Identifying Bird Remains Using Ancient DNA Barcoding2017In: Genes, ISSN 2073-4425, E-ISSN 2073-4425, Vol. 8, no 6, article id 169Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 26. Dalsätt, J
    et al.
    Zhou, Z
    Zhang, F
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Food remains in Confuciusornis sanctus suggest a fish diet.2006In: Die Naturwissenschaften, ISSN 0028-1042, E-ISSN 1432-1904, Vol. 93, no 9, p. 444-6Article in journal (Refereed)
    Abstract [en]

    Despite hundreds of excellent fossils of Confuciusornis, the most abundant group of birds in the Early Cretaceous, 'Jehol Biota' in China, there is yet no indication of the food choice of these birds. Here, we describe fish remains preserved in the alimentary system of a specimen of Confuciusornis sanctus from the Jiufotang Formation. This find is about five million years younger than all previously published confuciusornithid birds from the Yixian Formation. Although it is unknown how common fish was in the diet of Confuciusornis, the find does not support previous hypotheses that it fed on plants or grain.

  • 27.
    Dalsätt, Johan
    et al.
    Swedish Museum of Natural History, Department of Zoology.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    ZHOU, Zhonge
    Institute of Vertebrate Paleontology and Paleoanthropology; Chinese Academy of Sciences; Beijing 100044 China.
    A New Enantiornithes (Aves) from the Early Cretaceous of China2014In: Acta Geologica Sinica, ISSN 1000-9515, E-ISSN 1755-6724, Vol. 88, no 4, p. 1034-1040Article in journal (Refereed)
  • 28.
    Dalsätt, Johan
    et al.
    Swedish Museum of Natural History, Department of Zoology.
    Mörs, Thomas
    Swedish Museum of Natural History, Department of Paleobiology.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Fossil birds from the Miocene and Pliocene of Hambach (NW Germany)2006In: Palaeontographica. Abteilung A, Palaozoologie, Stratigraphie, ISSN 0375-0442, Vol. 277, no 1-6, p. 113-+Article in journal (Refereed)
  • 29. Dickinson, Edward C
    et al.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Systematic notes on Asian birds 32: The type locality of Hirundo daurica Laxmann, 17692002In: Zoologische Verhandelingen Leiden, ISSN 0024-1652, Vol. 340, p. 205-206Article in journal (Refereed)
    Abstract [en]

    The restricted type locality suggested by Brooke (1974) for Hirundo daurica Laxmann, 1769 was apparently made without a translation of the original Swedish description. With this in hand we find it necessary to correct that restriction and move the type locality some 2500 km west.

  • 30. Drovetski, Sergei V.
    et al.
    Zink, Robert M.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Fadeev, Igor V.
    A multilocus study of pine grosbeak phylogeography supports the pattern of greater intercontinental divergence in Holarctic boreal forest birds than in birds inhabiting other high-latitude habitats2010In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 37, no 4, p. 696-706Article in journal (Refereed)
  • 31. Eames, Jonathan C.
    et al.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    The Björkegren expeditions to French Indochina: A collection of birds from Vietnam and Cambodia1996In: Natural History Bulletin of the Siam Society, ISSN 0080-9462, Vol. 44, p. 75-111Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 32. Ekman, Jan
    et al.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Out of Gondwanaland; the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies.2006In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 273, no 1590, p. 1117-25Article in journal (Refereed)
    Abstract [en]

    Cooperative breeding is comparatively rare among birds in the mainly temperate and boreal Northern Hemisphere. Here we test if the distribution of breeding systems reflects a response to latitude by means of a phylogenetic analysis using correlates with geographical range among the corvids (crows, jays, magpies and allied groups). The corvids trace their ancestry to the predominantly cooperative 'Corvida' branch of oscine passerines from the Australo-Papuan region on the ancient Gondwanaland supercontinent, but we could not confirm the ancestral state of the breeding system within the family, while family cohesion may be ancestral. Initial diversification among pair-breeding taxa that are basal in the corvid phylogeny, represented by genera such as Pyrrhocorax and Dendrocitta, indicates that the corvid family in its current form could have evolved from pair-breeding ancestors only after they had escaped the Australo-Papuan shield. Within the family, cooperative breeding (alloparental care/family cohesion) is strongly correlated to latitude and its predominance in species maintaining a southerly distribution indicates a secondary evolution of cooperative breeding in the lineage leading away from the basal corvids. Multiple transitions show plasticity in the breeding system, indicating a response to latitude rather than evolutionary inertia. The evolutionary background to the loss of cooperative breeding among species with a northerly distribution is complex and differs between species, indicating a response to a variety of selection forces. Family cohesion where the offspring provide alloparental care is a main route to cooperatively breeding groups among corvids. Some corvid species lost only alloparental care, while maintaining coherent family groups. Other species lost family cohesion and, as a corollary, they also lost the behaviour where retained offspring provide alloparental care.

  • 33.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    A multivariate analysis of microevolution in the humerus of the eider (Somateria mollissima (L.))1986In: Nordic Late Quarternary Biology and Ecology / [ed] Königsson, L.-K., 1986, p. 107-109Chapter in book (Refereed)
  • 34.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Aves: The living descendants of flying dinosaurs2014In: The tree of life: Evolution and classification of living organisms / [ed] Vargas, Pablo & Zardoya, Rafael, Sunderland, MA: Sinauer Associates, Inc. , 2014, p. 530-540Chapter in book (Refereed)
  • 35.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Bosättning i Birka - animalieproduktion och konsumtion1987In: Meta: Medeltidsarkeologisk tidskrift, ISSN 0348-7903, no 3, p. 3-5Article in journal (Other academic)
    Download full text (pdf)
    fulltext
  • 36.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Current perspectives on the evolution of birds2008In: Contributions to zoology, ISSN 1383-4517, E-ISSN 1875-9866, Vol. 77, no 2, p. 109-116Article in journal (Refereed)
  • 37.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Det osteologiska materialet1994In: Arkeologiska massfynd / [ed] Modig, A., Stockholm: Riksantikvarieämbetet, 1994, p. 44-47Chapter in book (Other academic)
    Download full text (pdf)
    fulltext
  • 38.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Evolution and biogeography of suboscine birds analysed by DNA sequence data – a research program at the Swedish Museum of Natural History2005In: Zoologische Mededelingen, Vol. 79, p. 173-174Article in journal (Other academic)
  • 39.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Evolution of terrestrial birds in three continents: biogeography and parallel radiations2012In: Journal of Biogeography, ISSN 0305-0270, E-ISSN 1365-2699, Vol. 39, no 5, p. 813-824Article in journal (Refereed)
  • 40.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Exploitation of seabirds in central Sweden during late Iron Age1987In: Theoretical Approaches to Artefacts, Settlement and Society: Studies in honour of Mats P. Malmer / [ed] Burenhult, G., Carlsson, A., Hyenstrand, Å. & Sjøvold, T, Oxford, 1987, p. 445-453Chapter in book (Refereed)
  • 41.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Fjäderfä och vildfågel - osteologisk analys av fågelben1991In: Bryggaren - ett kvarter i centrum / [ed] Carlsson, R., Elfwendahl, M. & Perming, A., Riksantikvarieämbetet, 1991, p. 207-219Chapter in book (Other academic)
  • 42.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Förändringar av Östersjöfiskets betydelse för befolkningen i Mälardalen under sen järnålder och medeltid1989In: Avstamp - för en ny Sigtunaforskning: 18 forskare om Sigtuna, heldagseminarium kring Sigtunaforskning den 26 november 1987, Gröna Ladan, Sigtuna / [ed] Tesch, S., Sigtuna: Sigtuna Museer , 1989, p. 31-34Chapter in book (Other academic)
  • 43.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Interpretations of Archaeological Bird Remains - a Taphonomic Approach1987In: Journal of Archaeological Science, ISSN 0305-4403, E-ISSN 1095-9238, Vol. 14, no 1, p. 65-75Article in journal (Refereed)
  • 44.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Osteological analysis of faunal remains from Kolsvidja, Sund parish, Åland province, Finland1989In: Finskt Museum, ISSN 1235-0087Article in journal (Refereed)
  • 45.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Senatlantiska faunalämningar från en boplats vid Leksand, Dalarna1994In: Fornvännen, ISSN 0015-7813, E-ISSN 1404-9430, Vol. 89, p. 251-256Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 46.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Swedish records of the eastern Palearctic Hoopoe subspecies Upupa epops saturata1997In: Bulletin of the British Ornithologist's Club, ISSN 0007-1595, Vol. 117, p. 19-26Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 47.
    Ericson, Per G P
    Swedish Museum of Natural History, Research Division.
    Systematic relationships of the palaeogene family Presbyornithidae (Aves: Anseriformes)1997In: Zoological Journal of the Linnean Society, ISSN 0024-4082, E-ISSN 1096-3642, Vol. 121, no 4, p. 429-483Article in journal (Refereed)
    Abstract [en]

    The early Tertiary (Paleocene and Eocene) family Presbyornithidae is one of the most completely known group of fossil birds. Essentially all parts of the skeleton are represented in the fossil record, allowing a thorough analysis of the phylogenetic position of the family. Forty-two families of nonpasserine birds representing the orders Ciconiiformes, Anseriformes, Galliformes, Gruiformes and Charadriiformes, were included in a cladistic analysis of 71 skeletal characters. The previously suggested anseriform affinity of the Presbyornithidae was confirmed. Furthermore, the family proved to be closer to the Anatidae than to the Anhimidae or Anseranatidae. The many postcranial similarities with certain charadriiform birds as the Burhinidae, obviously are plesiomorphies. By this observation, a better undestanding of character evolution in nonpasserine skeletal morphology is gained. The often suggested close relationship of anseriform and galliform birds is not confirmed by osteology. Instead, the Anseriformes and the Phoenicopteridae form a monophyletic clade that is the sister to the remaining ciconiiform birds. This result renders the Ciconiiformes sensu Wetmore (1960) polyphyletic. (C) 1997 The Linnean Society of London.

  • 48.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Systematics, anatomy and paleoecology of the Paleogene family Presbyornithidae (Aves: Anseriformes)2000In: PaleoBios, ISSN 0031-0298, Vol. 20, p. 1-23Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 49.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Säl och säljakt i Östersjöområdet under stenåldern1989In: Faunahistoriska studier tillägnade Johannes Lepiksaar. Symposium 26 maj 1988 / [ed] Iregren, E. & Liljekvist, R., Lund: Lund University , 1989, p. 57-64Chapter in book (Refereed)
  • 50.
    Ericson, Per G P
    Swedish Museum of Natural History, Department of Bioinformatics and Genetics.
    Tama och vilda djur på fem skånska boplatser daterade till bronsålder, järnålder och medeltid1996In: Skåne på längden: Sydgasundersökningarna 1983-1985 / [ed] Räf, E., Lund: Riksantikvarieämbetet, 1996, p. 357-392Chapter in book (Other academic)
1234 1 - 50 of 192
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf