Change search
Refine search result
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Ivarsson, Magnus
    Swedish Museum of Natural History, Department of Paleobiology.
    Astolfo, Alberto
    Paul Scherrer Institute.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Broman, Curt
    Stockholm University.
    Marone, Federica
    Paul Scherrer Institute.
    Stampanoni, Marco
    ETH Zürich.
    Deep-biosphere consortium of fungi and prokaryotes in Eocene sub-seafloor basalts.2014In: Geobiology, ISSN 1472-4677, E-ISSN 1472-4669, Vol. 12, no 6, p. 489-496Article in journal (Refereed)
    Abstract [en]

    The deep biosphere of the subseafloor crust is believed to contain a significant part of Earth’s biomass, but because of the difficulties of directly observing the living organisms, its composition and ecology are poorly known. We report here a consortium of fossilized prokaryotic and eukaryotic microorganisms, occupying cavities in deep-drilled vesicular basalt from the Emperor Seamounts, Pacific Ocean, 67.5 meters below seafloor (mbsf). Fungal hyphae provide the framework on which prokaryote-like organisms are suspended like cobwebs and iron-oxidizing bacteria form microstromatolites (Frutexites). The spatial interrelationships show that the organisms were living at the same time in an integrated fashion, suggesting symbiotic interdependence. The community is contemporaneous with secondary mineralizations of calcite partly filling the cavities. The fungal hyphae frequently extend into the calcite, indicating that they were able to bore into the substrate through mineral dissolution. A symbiotic relationship with chemoautotrophs, as inferred for the observed consortium, may be a prerequisite for the eukaryotic colonization of crustal rocks. Fossils thus open a window to the extant as well as the ancient deep biosphere.

    Download full text (pdf)
    fulltext
  • 2.
    Bengtson, Stefan
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Sallstedt, Therese
    Swedish Museum of Natural History, Department of Paleobiology.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Whitehouse, Martin
    Swedish Museum of Natural History, Department of Geology.
    Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae2017In: PLoS biology, ISSN 1544-9173, E-ISSN 1545-7885, Vol. 15, no 3, p. 1-38, article id e2000735Article in journal (Refereed)
    Abstract [en]

    The ~1.6 Ga Tirohan Dolomite of the Lower Vindhyan in central India contains phosphatized stromatolitic microbialites. We report from there uniquely well-preserved fossils interpreted as probable crown-group rhodophytes (red algae). The filamentous form Rafatazmia chitrakootensis n. gen, n. sp. has uniserial rows of large cells and grows through diffusely distributed septation. Each cell has a centrally suspended, conspicuous rhomboidal disk interpreted as a pyrenoid. The septa between the cells have central structures that may represent pit connections and pit plugs. Another filamentous form, Denaricion mendax n. gen., n. sp., has coin-like cells reminiscent of those in large sulfur-oxidizing bacteria but much more recalcitrant than the liquid-vacuole-filled cells of the latter. There are also resemblances with oscillatoriacean cyanobacteria, although cell volumes in the latter are much smaller. The wider affinities of Denaricion are uncertain. Ramathallus lobatus n. gen., n. sp. is a lobate sessile alga with pseudoparenchymatous thallus, “cell fountains,” and apical growth, suggesting florideophycean affinity. If these inferences are correct, Rafatazmia and Ramathallus represent crown-group multicellular rhodophytes, antedating the oldest previously accepted red alga in the fossil record by about 400 million years.

    Download full text (pdf)
    fulltext
  • 3. Chi Fru, Ernest
    et al.
    Ivarsson, Magnus
    Swedish Museum of Natural History, Department of Paleobiology.
    Kilias, Stephanos P
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Marone, Federica
    Paul Scherrer Institute.
    Fortin, Danielle
    Broman, Curt
    Stampanoni, Marco
    ETH Zürich.
    Fossilized iron bacteria reveal pathway to biological origin of banded iron formation.2013In: Nature Communications, ISSN 2041-1723, Vol. 4, no 2050, p. 1-7Article in journal (Refereed)
    Abstract [en]

    Debates on the formation of banded iron formations in ancient ferruginous oceans are dominated by a dichotomy between abiotic and biotic iron cycling. This is fuelled by difficulties in unravelling the exact processes involved in their formation. Here we provide fossil environmental evidence for anoxygenic photoferrotrophic deposition of analogue banded iron rocks in shallow marine waters associated with an Early Quaternary hydrothermal vent field on Milos Island, Greece. Trace metal, major and rare earth elemental compositions suggest that the deposited rocks closely resemble banded iron formations of Precambrian origin. Well-preserved microbial fossils in combination with chemical data imply that band formation was linked to periodic massive encrustation of anoxygenic phototrophic biofilms by iron oxyhydroxide alternating with abiotic silica precipitation. The data implicate cyclic anoxygenic photoferrotrophy and their fossilization mechanisms in the construction of microskeletal fabrics that result in the formation of characteristic banded iron formation bands of varying silica and iron oxide ratios.

    Download full text (pdf)
    ChiFru_etal_2013_BIF_MS
  • 4.
    Cunningham, John
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Vargas, Kelly
    Liu, Pengju
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Marone, Federica
    Martínez-Pérez, Carlos
    Guizar-Sicairos, Manuel
    Holler, Mirko
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Donoghue, Philip C.J.
    Critical appraisal of tubular putative eumetazoans from the Ediacaran Weng’an Doushantuo biota2015In: Proceedings of the Royal Society of London. Biological Sciences, ISSN 0962-8452, E-ISSN 1471-2954, Vol. 282, p. 1-9, article id 2151169Article in journal (Refereed)
    Abstract [en]

    Molecular clock analyses estimate that crown-group animals began diversifying hundreds of millions of years before the start of the Cambrian period. However, the fossil record has not yielded unequivocal evidence for animals during this interval. Some of the most promising candidates for Precambrian animals occur in theWeng’an biota of South China, including a suite of tubular fossils assigned to Sinocyclocyclicus, Ramitubus, Crassitubus and Quadratitubus, that have been interpreted as soft-bodied eumetazoans comparable to tabulate corals. Here, we present new insights into the anatomy, original composition and phylogenetic affinities of these taxa based on data from synchrotron radiation X-ray tomographic microscopy, ptychographic nanotomography, scanning electron microscopy and electron probe microanalysis. The patterns of deformation observed suggest that the cross walls of Sinocyclocyclicus and Quadratitubus were more rigid than those of Ramitubus and Crassitubus. Ramitubus and Crassitubus specimens preserve enigmatic cellular clusters at terminal positions in the tubes. Specimens of Sinocyclocyclicus and Ramitubus have biological features that might be cellular tissue or subcellular structures filling the spaces between the crosswalls. These observations are incompatible with a cnidarian interpretation, in which the spaces between cross walls are abandoned parts of the former living positions of the polyp. The affinity of the Weng’an tubular fossils may lie within the algae.

    Download full text (pdf)
    Cunningham_etal_2015_Tubular
  • 5.
    Ivarsson, Magnus
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Stampanoni, Marco
    ETH Zürich.
    Marone, Federica
    Paul Scherrer Institute.
    Tehler, Anders
    Swedish Museum of Natural History, Department of Botany.
    Fossilized fungi in subseafloor Eocene basalts.2012In: Geology, ISSN 0091-7613, Vol. 40, no 2, p. 163-166Article in journal (Refereed)
    Abstract [en]

    The deep biosphere of subseafl oor basalts is thought to consist of mainly prokaryotes (bacteria and archaea). Here we report fossilized fi lamentous microorganisms from subseafl oor basalts interpreted as fossilized fungal hyphae, probably Dikarya, rather than fossilized prokaryotes. The basalts were collected during the Ocean Drilling Program Leg 197 at the Emperor Seamounts, North Pacifi c Ocean, and the fossilized fungi are observed in carbonate-fi lled veins and vesicles in samples that represent a depth of ~150 m below the seafl oor. Three-dimensional visualizations using synchrotron-radiation X-ray tomographic microscopy show characteristic fungal morphology of the mycelium-like network, such as frequent branching, anastomosis, and septa. Possible presence of chitin in the hypha walls was detected by staining with Wheat Germ Agglutinin conjugated with Fluorescein Isothiocyanate and examination using fl uorescence microscopy. The presence of fungi in subseafl oor basalts challenges the present understanding of the deep subseafl oor biosphere as being exclusively prokaryotic.

  • 6.
    Ivarsson, Magnus
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Bengtson, Stefan
    Swedish Museum of Natural History, Department of Paleobiology.
    Skogby, Henrik
    Swedish Museum of Natural History, Department of Geology.
    Belivanova, Veneta
    Swedish Museum of Natural History, Department of Paleobiology.
    Marone, Federica
    Paul Scherrer Institute.
    Fungal colonies in open fractures of subseafloor basalt.2013In: Geo-Marine Letters, ISSN 0276-0460, E-ISSN 1432-1157, Vol. 33, no 4, p. 233-234Article in journal (Refereed)
    Abstract [en]

    The deep subseafloor crust is one of the few great frontiers of unknown biology on Earth and, still today, the notion of the deep biosphere is commonly based on the fossil record. Interpretation of palaeobiological information is thus central in the exploration of this hidden biosphere and, for each new discovery, criteria used to establish biogenicity are challenged and need careful consideration. In this paper networks of fossilized filamentous structures are for the first time described in open fractures of subseafloor basalts collected at the Emperor Seamounts, Pacific Ocean. These structures have been investigated with optical microscopy, environmental scanning electron microscope, energy dispersive spectrometer, X-ray powder diffraction as well as synchrotron-radiation X-ray tomographic microscopy, and interpreted as fossilized fungal mycelia.Morphological features such as hyphae, yeastlike growth and sclerotia were observed. The fossilized fungi are mineralized by montmorillonite, a process that probably began while the fungi were alive. It seems plausible that the fungi produced mucilaginous polysaccharides and/or extracellular polymeric substances that attracted minerals or clay particles, resulting in complete fossilization by montmorillonite. The findings are in agreement with previous observations of fossilized fungi in subseafloor basalts and establish fungi as regular inhabitants of such settings. They further show that fossilized microorganisms are not restricted to pore spaces filled by secondary mineralizations but can be found in open pore spaces as well. This challenges standard protocols for establishing biogenicity and calls for extra care in data interpretation.

    Download full text (pdf)
    Ivarsson_etal_2013_Fungal
  • 7.
    Ivarsson, Magnus
    et al.
    Swedish Museum of Natural History, Department of Paleobiology.
    Bengtson, Stefan
    Skogby, Henrik
    Lazor, Peter
    Broman, Curt
    Belivanova, Veneta
    Marone, Federica
    A fungal-prokaryotic consortium at the basalt-zeolite interface in subseafloor igneous crust2015In: PLOS ONE, E-ISSN 1932-6203Article in journal (Refereed)
1 - 7 of 7
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf