Change search
Refine search result
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Alvarez, Belinda
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Clymans, Wim
    Fontorbe, Guillaume
    Conley, Daniel
    Assessing the Potential of Sponges (Porifera) as Indicators of Ocean Dissolved Si Concentrations2017In: Frontiers in Marine Science, E-ISSN 2296-7745, Vol. 4, no 373Article in journal (Refereed)
    Abstract [en]

    We explore the distribution of sponges along dissolved silica (dSi) concentration gradients to test whether sponge assemblages are related to dSi and to assess the validity of fossil sponges as a palaeoecological tool for inferring dSi concentrations of the past oceans. We extracted sponge records from the publically available Global Biodiversity Information Facility (GBIF) database and linked these records with ocean physiochemical data to evaluate if there is any correspondence between dSi concentrations of the waters sponges inhabit and their distribution. Over 320,000 records of Porifera were available, of which 62,360 met strict quality control criteria. Our analyses was limited to the taxonomic levels of family, order and class. Because dSi concentration is correlated with depth in the modern ocean, we also explored sponge taxa distributions as a function of depth. We observe that while some sponge taxa appear to have dSi preferences (e.g., class Hexactinellida occurs mostly at high dSi), the overall distribution of sponge orders and families along dSi gradients is not sufficiently differentiated to unambiguously relate dSi concentrations to sponge taxa assemblages. We also observe that sponge taxa tend to be similarly distributed along a depth gradient. In other words, both dSi and/or another variable that depth is a surrogate for, may play a role in controlling sponge spatial distribution and the challenge is to distinguish between the two. We conclude that inferences about palaeo-dSi concentrations drawn from the abundance of sponges in the stratigraphic records must be treated cautiously as these animals are adapted to a great range of dSi conditions and likely other underlying variables that are related to depth. Our analysis provides a quantification of the dSi ranges of common sponge taxa, expands on previous knowledge related to their bathymetry preferences and suggest that sponge taxa assemblages are not related to particular dSi conditions. 

    Download full text (pdf)
    fulltext
  • 2. Barão, Lúcia
    et al.
    Vandevenne, Floor
    Clymans, Wim
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Ragueneau, Olivier
    Meire, Patrick
    Conley, Daniel J.
    Struyf, Eric
    Alkaline-extractable silicon from land to ocean: A challenge for biogenic silicon determination2015In: Limnology and Oceanography: Methods, E-ISSN 1541-5856, p. n/a-n/aArticle in journal (Refereed)
    Abstract [en]

    The biogeochemical cycling of silicon (Si) along the land-to-ocean continuum is studied by a variety of research fields and for a variety of scientific reasons. However, there is an increasing need to refine the methodology and the underlying assumptions used to determine biogenic silica (BSi) concentrations. Recent evidence suggests that contributions of nonbiogenic sources of Si dissolving during alkaline extractions, not corrected by standard silicate mineral dissolution correction protocols, can be substantial. The ratio between dissolved Si and aluminum (Al) monitored continuously during the alkaline extraction can be used to infer the origin of the Si fractions present. In this study, we applied both a continuous analysis method (0.5 M NaOH) and a traditional 0.1 M Na2CO3 extraction to a wide array of samples: (1) terrestrial vegetation, (2) soils from forest, cropland and pasture, (3) lake sediments, (4) suspended particulate matter and sediments from rivers, (5) sediments from estuaries and salt marshes and (6) ocean sediments. Our results indicate that the 0.1 M Na2CO3 extraction protocol can overestimate the BSi content, by simultaneously dissolving Si fractions of nonbiogenic origin that may represent up to 100% of the Si traditionally considered as biogenic, hampering interpretation especially in some deeper soil horizons, rivers and coastal oceanic sediments. Moreover, although the term amorphous Si was coined to reflect a growing awareness of nonbiogenic phases we show it is actually inappropriate in samples where silicate minerals may account for a large part of the extracted Si even after linear mineral correction.

    Download full text (pdf)
    fulltext
  • 3. Chi Fru, E.
    et al.
    Ivarsson, M.
    Swedish Museum of Natural History, Department of Geology.
    Kilias, S. P.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Hemmingsson, C.
    Broman, C.
    Bengtson, S.
    Swedish Museum of Natural History, Department of Paleobiology.
    Chatzitheodoridis, E.
    Biogenicity of an Early Quaternary iron formation, Milos Island, Greece2015In: Geobiology, ISSN 1472-4677, E-ISSN 1472-4669, Vol. 13, no 3, p. 225-244Article in journal (Refereed)
    Abstract [en]

    A ~2.0-million-year-old shallow-submarine sedimentary deposit on Milos Island, Greece, harbours an unmetamorphosed fossiliferous iron formation (IF) comparable to Precambrian banded iron formations (BIFs). This Milos IF holds the potential to provide clues to the origin of Precambrian BIFs, relative to biotic and abiotic processes. Here, we combine field stratigraphic observations, stable isotopes of C, S and Si, rock petrography and microfossil evidence from a ~5-m-thick outcrop to track potential biogeochemical processes that may have contributed to the formation of the BIF-type rocks and the abrupt transition to an overlying conglomerate-hosted IF (CIF). Bulk δ13C isotopic compositions lower than -25‰ provide evidence for biological contribution by the Calvin and reductive acetyl–CoA carbon fixation cycles to the origin of both the BIF-type and CIF strata. Low S levels of ~0.04 wt.% combined with δ34S estimates of up to ~18‰ point to a non-sulphidic depository. Positive δ30Si records of up to +0.53‰ in the finely laminated BIF-type rocks indicate chemical deposition on the seafloor during weak periods of arc magmatism. Negative δ30Si data are consistent with geological observations suggesting a sudden change to intense arc volcanism potentially terminated the deposition of the BIF-type layer. The typical Precambrian rhythmic rocks of alternating Fe- and Si-rich bands are associated with abundant and spatially distinct microbial fossil assemblages. Together with previously proposed anoxygenic photoferrotrophic iron cycling and low sedimentary N and C potentially connected to diagenetic denitrification, the Milos IF is a biogenic submarine volcano-sedimentary IF showing depositional conditions analogous to Archaean Algoma-type BIFs.

  • 4. Clymans, W.
    et al.
    Conley, D. J.
    Battles, J. J.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Koppers, M. M.
    Likens, G. E.
    Johnson, C. E.
    Silica uptake and release in live and decaying biomass in a northern hardwood forest2016In: Ecology, ISSN 0012-9658, E-ISSN 1939-9170, Vol. 97, no 11, p. 3044-3057Article in journal (Refereed)
    Abstract [en]

    In terrestrial ecosystems, a large portion (20-80%) of the dissolved Si (DSi) in soil solution has passed through vegetation. While the importance of this terrestrial Si filter is generally accepted, few data exist on the pools and fluxes of Si in forest vegetation and the rate of release of Si from decomposing plant tissues. We quantified the pools and fluxes of Si through vegetation and coarse woody debris (CWD) in a northern hardwood forest ecosystem (Watershed 6, W6) at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire, USA. Previous work suggested that the decomposition of CWD may have significantly contributed to an excess of DSi reported in stream-waters following experimental deforestation of Watershed 2 (W2) at the HBEF. We found that woody biomass (wood+bark) and foliage account for approximately 65% and 31%, respectively, of the total Si in biomass at the HBEF. During the decay of American beech (Fagus grandifolia) boles, Si loss tracked the whole-bole mass loss, while yellow birch (Betula alleghaniensis) and sugar maple (Acer saccharum) decomposition resulted in a preferential Si retention of up to 30% after 16yr. A power-law model for the changes in wood and bark Si concentrations during decomposition, in combination with an exponential model for whole-bole mass loss, successfully reproduced Si dynamics in decaying boles. Our data suggest that a minimum of 50% of the DSi annually produced in the soil of a biogeochemical reference watershed (W6) derives from biogenic Si (BSi) dissolution. The major source is fresh litter, whereas only similar to 2% comes from the decay of CWD. Decay of tree boles could only account for 9% of the excess DSi release observed following the experimental deforestation of W2. Therefore, elevated DSi concentrations after forest disturbance are largely derived from other sources (e.g., dissolution of BSi from forest floor soils and/or mineral weathering).

    Download full text (pdf)
    fulltext
  • 5. Conley, Daniel
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Fontorbe, Guillaume
    Clymans, Wim
    Stadmark, Johanna
    Hendry, Katherine
    Marron, Alan
    De La Rocha, Christina
    Biosilicification drives a decline of dissolved Si in the oceans through geologic time2017In: Frontiers in Marine Science, E-ISSN 2296-7745Article in journal (Refereed)
    Abstract [en]

    Biosilicification has driven variation in the global Si cycle over geologic time. The evolution of different eukaryotic lineages that convert dissolved Si (DSi) into mineralized structures (higher plants, siliceous sponges, radiolarians and diatoms) has driven a secular decrease in DSi in the global ocean leading to the low DSi concentrations seen today. Recent studies, however, have questioned the timing previously proposed for the DSi decreases and the concentration changes through deep time, which would have major implications for the cycling of carbon and other key nutrients in the ocean. Here, we combine relevant genomic data with geological data and present new hypotheses regarding the impact of the evolution of biosilicifying organisms on the DSi inventory of the oceans throughout deep time. Although there is no fossil evidence for true silica biomineralization until the late Precambrian, the timing of the evolution of silica transporter genes suggests that bacterial silicon-related metabolism has been present in the oceans since the Archean with eukaryotic silicon metabolism already occurring in the Neoproterozoic. We hypothesize that biological processes have influenced oceanic DSi concentrations since the beginning of oxygenic photosynthesis.

  • 6. Deng, Kai
    et al.
    Yang, Shouye
    Lei, Bi
    Chang, Yuan-Pin
    Su, Ni
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Xie, Xiaolei
    Small dynamic mountainous rivers in Taiwan exhibit large sedimentary geochemical and provenance heterogeneity over multi-spatial scales2019In: Earth and Planetary Science Letters, ISSN 0012-821X, E-ISSN 1385-013X, Vol. 505, p. 96-109Article in journal (Refereed)
    Abstract [en]

    Taiwan rivers are characterized by extremely rapid mass wasting and sediment transfer due to active tectonics and frequent typhoons. Various methods have been applied to constrain processes affecting their sediment source-to-sink routing. In most cases, the sediment at the outlet is considered to be a representative average of the whole upstream basin due to the short sediment routes (<200 km). However, this assumption may be inappropriate because huge compositional heterogeneity can exist even within such small dynamic river systems. To reveal their intra-station and basin-wide geochemical heterogeneity, we collected sediment samples along the Zhuoshui and Liwu Rivers in Taiwan. Multiple samples deposited in different locations or with different grain-sizes were collected at each station, and the <63 μm fractions were measured for their elemental and Sr–Nd isotopic compositions. Elemental ratios and dimension-reducing technique were firstly applied to discriminate the sediment provenances. They show that the large elemental heterogeneity exists between samples at the same station and also between stations along each river, explainable by variable sediment mixing and local lithological heterogeneity. When combining our Sr–Nd isotopic data with literature data from Taiwan rivers, five discrete clusters of river sediments can be distinguished, reflecting the inter-catchment heterogeneity of sediment provenance in Taiwan Island. We also applied a Sr–Nd isotopic mixing model coupled with Monte-Carlo simulations to quantify the provenance heterogeneity in both rivers. The sediment contribution of the Western Foothills/Tailuko Belt to the Zhuoshui/Liwu downstream can vary by a factor of ∼2 between sediment samples that were considered as spatial or temporal replicates. Combined with field in-situ observations, we propose that fast-changing sediment transport modes cause the provenance heterogeneity in small dynamic mountainous rivers attacked by frequent heavy storms or typhoons. Sediments transported during different events and with different provenances can be preserved at each station, which leads to the intra-station and basin-wide geochemical heterogeneity. This study shows that “small” dynamic mountainous rivers can exhibit “large” geochemical and provenance heterogeneity over multi-spatial scales, and thus the common assumption that “let nature do the averaging” should be treated cautiously in this kind of river. Therefore, we propose several effective sediment sampling approaches on small mountainous rivers for reference. Future studies relying on detrital sediments, e.g. applying cosmogenic nuclides or Li isotopes, should also be aware of the heterogeneous nature in small mountainous rivers, because fast-changing provenances can simultaneously bias the weathering and erosion signals and lead to unrepresentative results.

  • 7. Fontorbe, G.
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    De La Rocha, C. L.
    Hendry, K. R.
    Conley, D. J.
    A silicon depleted North Atlantic since the Palaeogene: Evidence from sponge and radiolarian silicon isotopes2016In: Earth and Planetary Science Letters, Vol. 453, p. 67-77Article in journal (Refereed)
    Abstract [en]

    Despite being one of Earth's major geochemical cycles, the evolution of the silicon cycle has received little attention and changes in oceanic dissolved silica (DSi) concentration through geologic time remain poorly constrained. Silicon isotope ratios (expressed as delta Si-30) in marine microfossils are becoming increasingly recognised for their ability to provide insight into silicon cycling. In particular, the delta Si-30 of siliceous sponge spicules has been demonstrated to be a useful proxy for past DSi concentrations. We analysed delta Si-30 in radiolarian tests and sponge spicules from the Blake Nose Palaeoceanographic Transect (ODP Leg 171B) spanning the Palaeocene-Eocene (ca. 60-30 Ma). Our delta Si-30 results range from +0.32 to +1.67 parts per thousand and -0.48 to +0.63 parts per thousand for the radiolarian and sponge records, respectively. Using an established relationship between ambient dissolved Si (DSi) concentrations and the magnitude of silicon isotope fractionation in siliceous sponges, we demonstrate that the Western North Atlantic was DSi deplete during the Palaeocene-Eocene throughout the water column, a conclusion that is robust to a range of assumptions and uncertainties. These data can constitute constraints on reconstructions of past-ocean circulation. Previous work has suggested ocean DSi concentrations were higher than modern ocean concentrations prior to the Cenozoic and has posited a drawdown during the Early Palaeogene due to the evolutionary expansion of diatoms. Our results challenge such an interpretation. We suggest here that if such a global decrease in oceanic DSi concentrations occurred, it must predate 60 Ma. (C) 2016 The Authors. Published by Elsevier B.V.

    Download full text (pdf)
    fulltext
  • 8. Fontorbe, Guillaume
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    De La Rocha, Christina
    Hendry, Kate
    Carstensen, Jacob
    Conley, Daniel
    Enrichment of dissolved silica in the deep equatorial Pacific during the Eocene-Oligocene2017In: Paleoceanography, ISSN 0883-8305, E-ISSN 1944-9186, Vol. 32, p. 848-863Article in journal (Refereed)
    Abstract [en]

    Silicon isotope ratios (expressed as δ30Si) in marine microfossils can provide insights into silica cycling over geologic time. Here we used δ30Si of sponge spicules and radiolarian tests from the Paleogene Equatorial Transect (Ocean Drilling Program Leg 199) spanning the Eocene and Oligocene (~50–23 Ma) to reconstruct dissolved silica (DSi) concentrations in deep waters and to examine upper ocean δ30Si. The δ30Si values range from 3.16 to +0.18‰ and from 0.07 to +1.42‰ for the sponge and radiolarian records, respectively. Both records show a transition toward lower δ30Si values around 37 Ma. The shift in radiolarian δ30Si is interpreted as a consequence of changes in the δ30Si of source DSi to the region. The decrease in sponge δ30Si is interpreted as a transition from low DSi concentrations to higher DSi concentrations, most likely related to the shift toward a solely Southern Ocean source of deep water in the Pacific during the Paleogene that has been suggested by results from paleoceanographic tracers such as neodymium and carbon isotopes. Sponge δ30Si provides relatively direct information about the nutrient content of deep water and is a useful complement to other tracers of deep water circulation in the oceans of the past. 

    Download full text (pdf)
    fulltext
  • 9.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Revisiting the dissolution of biogenic Si in marine sediments: a key term in the ocean Si budget2017In: Acta Geochimica, ISSN 2096-0956, Vol. 36, no 3, p. 429-432Article in journal (Refereed)
    Abstract [en]

    Of the ~240 × 1012 mol year−1 of biogenic silica (bSi) produced by diatoms and other silicifying organisms, only roughly 3%–4% escapes dissolution to be permanently buried. At the global scale, how, where and why bSi is preserved in sediment is not well understood. To help address this, I compile 6245 porewater dissolved Si concentrations from 453 sediment cores, to derive the concentration gradient at the sediment–water interface and thus diffusive fluxes out of the sediment. These range from <0.002 to 3.4 mol m−2 year−1, and are independent of temperature, depth and latitude. When classified by sediment lithology, predominantly siliceous sediments unsurprisingly have higher mean diffusive fluxes than predominantly calcareous or clay-rich sediment. Combined with the areal extent of these lithologies, the ‘best-guess’ global sedimentary bSi recycling flux is 69 × 1012 mol year−1.

    Download full text (pdf)
    fulltext
  • 10.
    Frings, Patrick J
    et al.
    Swedish Museum of Natural History, Department of Geology.
    Clymans, W.
    Fontorbe, G.
    Gray, W.
    Chakrapani, G. J.
    Conley, D. J.
    De La Rocha, C.
    Silicate weathering in the Ganges alluvial plain2015In: Earth and Planetary Science Letters, Vol. 427, p. 136-148Article in journal (Refereed)
    Abstract [en]

    The Ganges is one of the world's largest rivers and lies at the heart of a body of literature that investigates the interaction between mountain orogeny, weathering and global climate change. Three regions can be recognised in the Ganges basin, with the Himalayan orogeny to the north and the plateaus of peninsular India to the south together delimiting the Ganges alluvial plain. Despite constituting approximately 80% of the basin, weathering processes in the peninsula and alluvial plain have received little attention. Here we present an analysis of 51 water samples along a transect of the alluvial plain, including all major tributaries. We focus on the geochemistry of silicon and its isotopes. Area normalised dissolved Si yields are approximately twice as high in rivers of Himalaya origin than the plain and peninsular tributaries (82, 51 and 32 kmol SiO2 km(-2) yr(-1), respectively). Such dissolved Si fluxes are not widely used as weathering rate indicators because a large but variable fraction of the DSi mobilised during the initial weathering process is retained in secondary clay minerals. However, the silicon isotopic composition of dissolved Si (expressed as delta Si-30) varies from +0.8 parts per thousand in the Ganges mainstem at the Himalaya front to +3.0 parts per thousand in alluvial plain streams and appears to be controlled by weathering congruency, i.e. by the degree of incorporation of Si into secondary phases. The higher delta Si-30 values therefore reflect decreasing weathering congruency in the lowland river catchments. This is exploited to quantify the degree of removal using a Rayleigh isotope mass balance model, and consequently derive initial silica mobilisation rates of 200, 150 and 107 kmol SiO2 km(-2) yr(-1), for the Himalaya, peninsular India and the alluvial plain, respectively. Because the non-Himalayan regions dominate the catchment area, the majority of initial silica mobilisation from primary minerals occurs in the alluvial plain and peninsular catchment (41% and 34%, respectively). (C) 2015 The Authors. Published by Elsevier B.V.

    Download full text (pdf)
    fulltext
  • 11.
    Frings, Patrick J
    et al.
    Swedish Museum of Natural History, Department of Geology.
    Clymans, Wim
    Conley, Daniel J.
    Amorphous Silica Transport in the Ganges Basin: Implications for Si Delivery to the Oceans2014In: Procedia Earth and Planetary Science, E-ISSN 1878-5220, Vol. 10, no 0, p. 271-274Article in journal (Refereed)
    Abstract [en]

    Rivers transport ∽6 x1012 mol yr-1 of dissolved Si (DSi) from the continents to the oceans. They also carry amorphous silica (ASi), solid phases likely to dissolve in seawater. Unfortunately, the magnitude of this flux is poorly constrained at a global scale. We present 92 new ASi values from suspended particulate matter (SPM) from the Ganges basin. Bulk SPM is ∽1.2% ASi, and mean ASi concentrations are ∽65 μM, of comparable magnitude to DSi concentrations. Our results also indicate a) ASi is not evenly distributed in the water column of large rivers, b) the ASi is not a wholly biogenic Si endmember and c) the ASi flux is, to a first order, a function of the SPM load. Our results suggest that the ASi particulate load is much greater than previously believed, rivaling that of the DSi load with important implications for the global Si cycle and oceanic Si isotopic budget.

    Download full text (pdf)
    fulltext
  • 12.
    Frings, Patrick J
    et al.
    Swedish Museum of Natural History, Department of Geology.
    Clymans, Wim
    Jeppesen, Erik
    Lauridsen, Torben L
    Struyf, Eric
    Conley, Daniel J
    Lack of steady-state in the global biogeochemical Si cycle: emerging evidence from lake Si sequestration2014In: Biogeochemistry, ISSN 0168-2563, E-ISSN 1573-515X, Vol. 117, no 2-3, p. 255-277Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 13.
    Frings, Patrick J
    et al.
    Swedish Museum of Natural History, Department of Geology.
    De La Rocha, Christina
    Struyf, Eric
    van Pelt, Dimitri
    Schoelynck, Jonas
    Hudson, Mike Murray
    Gondwe, Mangaliso J.
    Wolski, Piotr
    Mosimane, Keotsheple
    Gray, William
    Schaller, Jörg
    Conley, Daniel J.
    Tracing silicon cycling in the Okavango Delta, a sub-tropical flood-pulse wetland using silicon isotopes2014In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 142, no 0, p. 132-148Article in journal (Refereed)
    Abstract [en]

    Chemical weathering of silicate minerals releases elements into solution whereas the neoformation of secondary minerals works in the opposite direction, potentially confounding estimates of silicate weathering rates. Silicon isotopes (δ30Si) may be a useful tool to investigate these processes. Here, we present 82 δ30Si measurements from surface waters, pore waters, biogenic silica (BSi), clays, sand and vegetation from the Okavango Delta, Botswana, a freshwater sub-tropical, flood-pulse wetland. Hydrologically, the Okavango is dominated by evapotranspiration water losses to the atmosphere. It receives an annual pulse of water that inundates seasonal floodplains, while river baseflow is sufficient to maintain a permanent floodplain. δ30Si in dissolved silica (DSi) in surface waters along a 300 km transect at near-peak flood show a limited range (0.36–1.19‰), implying the Delta is well buffered by a balance of processes adding and removing DSi from the surface water. A key control on DSi concentrations is the uptake, production of BSi and recycling of Si by aquatic vegetation, although the net isotopic effect is necessarily small since all BSi re-dissolves on short timescales. In the sediments, BSi δ30Si (n = 30) ranges from −1.49‰ to +0.31‰ and during dissolution, residual BSi tends towards higher δ30Si. The data permit a field-based estimate of the fractionation associated with BSi dissolution, ε30BSi-DSi = −0.26‰, though it is unclear if this is an artefact of the process of dissolution. Clay δ30Si ranges from −0.97‰ to +0.10‰, (n = 15, mean = −0.31‰) and include the highest values yet published, which we speculate may be due to an equilibrium isotope effect during diagenetic transformation of BSi. Two key trends in surface water DSi δ30Si merit further examination: declining δ30Si in an area roughly corresponding to the permanent floodplains despite net DSi removal, and increasing δ30Si in the area corresponding to the seasonal floodplains. We infer that evaporative enrichment of surface waters creates two contrasting regimes. Chemical weathering of low δ30Si phases releases low δ30Si DSi in the relatively dilute waters of the permanent floodplains, whereas silicon removal via clay formation or vegetation uptake is the dominant process in the more enriched, seasonal floodplains.

    Download full text (pdf)
    fulltext
  • 14.
    Frings, Patrick J
    et al.
    Swedish Museum of Natural History, Department of Geology.
    Fontorbe, G.
    Clymans, W.
    De La Rocha, C. L.
    Conley, D.J.
    The continental Si cycle and its impact on the ocean Si isotope budget2016In: Chemical Geology, Vol. 425, p. 12-36Article in journal (Refereed)
    Download full text (pdf)
    fulltext
  • 15. Harrison, John A.
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Beusen, Arthur H. W.
    Conley, Daniel J.
    McCrackin, Michelle L.
    Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs2012In: Global Biogeochemical Cycles, ISSN 0886-6236, E-ISSN 1944-9224, Vol. 26, no 2, p. n/a-n/aArticle in journal (Refereed)
    Abstract [en]

    Lentic water bodies (lakes and reservoirs) offer favorable conditions for silica (SiO2) burial in sediments. Recent global estimates suggest that (1) lentic SiO2 trapping is a globally important SiO2 flux, and (2) through reservoir construction, humans have dramatically altered river dissolved SiO2 (DSi) transport and coastal DSi delivery. However, regional to global scale patterns and controls of DSi removal in lentic systems are poorly constrained. Here we use 27 published lake and reservoir DSi budgets to develop insights into patterns and controls of lentic DSi retention and to develop a new, spatially explicit, global model of lentic DSi removal called SiRReLa (Silica Retention in Reservoirs and Lakes). In our analysis, lentic DSi removal (kg SiO2 yr−1) was significantly and positively related to DSi loading (P < 0.0001; r2 = 0.98), and DSi removal efficiency was significantly and positively related to water residence time (P < 0.0001; r2 = 0.68). In addition, DSi settling rates were, on average, 6.5-fold higher in eutrophic systems than in non-eutrophic systems (median settling velocities: 11.1 and 1.7 m yr−1 for eutrophic and non-eutrophic systems, respectively; P < 0.01). SiRReLa, which incorporates these insights, performed quite well in predicting both total DSi removal (kg SiO2 yr−1; Nash Sutcliffe Efficiency (N.S.E) = 0.88) and DSi removal efficiency (% Si removed; N.S.E. = 0.75), with no detectable bias in the model. Global application of SiRReLa confirms that lentic systems are important sinks for DSi, removing 89.1 Tg DSi yr−1 from watersheds globally, roughly 19–38% of all DSi inputs to surface waters. Small lakes and reservoirs (<50 km2) were critical in the analysis, retaining 81% (72 Tg DSi yr−1) of the globally retained total. Furthermore, although reservoirs occupy just 6% of the global lentic surface area, they retained approximately 35% of the total DSi removed by lentic systems. Regional hot spots for lentic DSi removal were identified and imply that lentic systems can remove the vast majority of DSi across a large fraction of Earth's land surface. Finally, a sensitivity analysis indicates that future improvements in DSi trapping and transport models should focus on improving estimates of DSi input to surface waters.

  • 16. Heathcote, A. J.
    et al.
    Hobbs, J. M. R.
    Anderson, N. J.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Engstrom, D. R.
    Downing, J. A.
    Diatom floristic change and lake paleoproduction as evidence of recent eutrophication in shallow lakes of the midwestern USA2015In: Journal of Paleolimnology, ISSN 0921-2728, E-ISSN 1573-0417, Vol. 53, no 1, p. 17-34Article in journal (Refereed)
    Abstract [en]

    Intensive agricultural practices can dramatically change the landscape, thereby increasing the concentrations and rates at which nutrients are delivered to aquatic ecosystems. In the United States, concerns about accelerating rates of lake eutrophication related to increases in nutrient loading require a method of quantifying ecological changes that have occurred since European settlement. Because the application of traditional quantitative total phosphorus transfer functions in paleolimnology has proven difficult in shallow, hypereutrophic lakes, we used several approaches in this study to assess ecosystem changes associated with eutrophication of 32 natural lakes in the state of Iowa, USA. In addition to traditional transfer function methods, we estimated changes in primary productivity from the flux of biogenic silica (BSi) and organic carbon accumulation rates (OC AR). Additionally, we compared pre-disturbance diatom communities to modern diatom communities, i.e. floristic change, using non-metric multi-dimensional scaling and square chord distance. OC AR and BSi fluxes increased over time and were positively correlated with the time period of agricultural intensification in the region (post-1940). Ninety-one percent of the lakes in this study showed evidence for eutrophication based on geochemical proxies, and 88 % of lakes showed major floristic change in the diatom community. Whereas geochemical indicators showed consistent increases in productivity across most lakes, floristic changes reflected more complex interactions between other environmental drivers. The magnitude of floristic change did not directly correlate to nutrient-driven increases in primary production, but was driven by ecological diatom assembly related to lake depth. Transfer functions consistently perform poorly, especially for shallow lakes, and other techniques that combine geochemistry and diatom ecology are recommended for reconstructions of eutrophication.

  • 17. Mosimane, Keotshephile
    et al.
    Struyf, Eric
    Gondwe, Mangaliso
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    van Pelt, Dimitri
    Wolski, Piotr
    Schoelynck, Jonas
    Schaller, Jörg
    Conley, Daniel
    Murray-Hudson, Mike
    Variability in chemistry of surface and soil waters of an evapotranspiration-dominated flood-pulsed wetland: solute processing in the Okavango Delta, Botswana2017In: Water SA, ISSN 0378-4738, Vol. 43, no 1, p. 104-115Article in journal (Refereed)
    Abstract [en]

    Water chemistry is important for the maintenance of wetland structure and function. Interpreting ecological patterns in a wetland system therefore requires an in-depth understanding of the water chemistry of that system. We investigated the spatial distribution of chemical solutes both in soil pore water and surface water, along island-floodplain-channel hydrological gradients in seasonally and permanently inundated habitats between major regions in the Okavango Delta, Botswana. Our results show that major cations (Ca, Na, Mg, and K), dissolved silica (DSi), dissolved boron (B), dissolved organic matter (DOC) and electrical conductivity increased significantly, at  < 0.05, from the inlet of the Delta (the Panhandle) to the distal downstream reaches, suggesting the influence of evapoconcentration. Concentrations of dissolved Fe, Al, Zn, Cu, and Mn significantly decreased, at < 0.05, from the inflow of the Delta to the distal reaches. Only Na, Mn, Fe, Al, and DOC showed significant differences, at < 0.05, along the local floodplain-channel hydrological gradients, with higher solute concentrations in the floodplains than the channels. Solute concentrations in soil water exhibited similar distribution patterns to those in surface water, but concentrations were higher in soil water. Based on the results, we hypothesise that floodplain emergent vegetation and the channel-fringing vegetation in the Panhandle (a fault-bounded entry trough to the Delta) and the permanently inundated eco-region together influence the cycling of solutes that enter the Delta through uptake.

  • 18. Pogge von Strandmann, Philip AE
    et al.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Murphy, Melissa J
    Lithium isotope behaviour during weathering in the Ganges Alluvial Plain2017In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 198, p. 17-31Article in journal (Refereed)
    Abstract [en]

    The Ganges river system is responsible for the transportation of a large flux of dissolved materials derived from Himalayan weathering to the oceans. Silicate weathering-driven cooling resulting from uplift of the Himalayas has been proposed to be a key player in Cenozoic climate variation. This study has analysed Li isotope (d7Li) ratios from over 50 Ganges river waters and sediments, in order to trace silicate weathering processes. Sediments have d7Li of $0‰, identical to bulk continental crust, however suspended sediment depth profiles do not display variations associated with grain size that have been observed in other large river systems. Dissolved d7Li are low ($11‰) in the Ganges headwaters, but reach a constant value of 21 ± 1.6‰ within a relatively short distance downstream, which is then maintained for almost 2000 km to the Ganges mouth. Given that Li isotopes are controlled by the ratio of primary mineral dissolution to secondary mineral formation, this suggests that the Ganges floodplain is at steady-state in terms of these processes for most of its length. Low d7Li in the mountainous regions suggest silicate weathering is therefore at its most congruent where uplift and fresh silicate exposure rates are high. However, there is no correlation between d7Li and the silicate weathering rate in these rivers, suggesting that Li isotopes can- not be used as a weathering-rate tracer, although they do inform on weathering congruency and intensity. The close-to- constant d7Li values for the final 2000 km of Ganges flow also suggest that once the size of the alluvial plain reached more than $500 km (the flow distance after which riverine d7Li stops varying), the Ganges exerted little influence on the changing Cenozoic seawater d7Li, because riverine d7Li attained a near steady-state composition. 

  • 19. Pokharel, Rasesh
    et al.
    Gerrits, Ruben
    Schuessler, Jan
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Sobotka, Roman
    Gorbushina, Anna
    von Blanckenburg, Friedhelm
    Magnesium Stable Isotope Fractionation on a Cellular Level Explored by Cyanobacteria and Black Fungi with Implications for Higher Plants2018In: Environmental Science and Technology, ISSN 0013-936X, E-ISSN 1520-5851, Vol. 52, p. 12216-12224Article in journal (Refereed)
    Abstract [en]

    In a controlled growth experiment we found that the cyanobacterium Nostoc punctiforme has a bulk cell 26Mg/24Mg ratio (expressed as δ26Mg) that is −0.27‰ lower than the growth solution at a pH of ca. 5.9. This contrasts with a recently published δ26Mg value that was 0.65‰ higher than growth solution for the black fungus Knufia petricola at similar laboratory conditions, interpreted to reflect loss of 24Mg during cell growth. By a mass balance model constrained by δ26Mg in chlorophyll extract we inferred the δ26 Mg value of the main Mg compartments in a cyanobacteria cell: free cytosolic Mg (−2.64‰), chlorophyll (1.85‰), and the nonchlorophyll-bonded Mg compartments like ATP and ribosomes (−0.64‰). The lower δ26Mg found in Nostoc punctiformewould thus result from the absence of significant Mg efflux during cell growth in combination with either (a) discrimination against 26Mg during uptake by desolvation of Mg or transport across protein channels or (b) discrimination against 24Mg in the membrane transporter during efflux. The model predicts the preferential incorporation of 26Mg in cells and plant organs low in Mg and the absence of isotope fractionation in those high in Mg, corroborated by a compilation of Mg isotope ratios from fungi, bacteria, and higher plants.

  • 20. Sayer, Carl D.
    et al.
    Bennion, Helen
    Davidson, Thomas A.
    Burgess, Amy
    Clarke, Gina
    Hoare, Daniel
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Hatton-Ellis, Tristan
    The application of palaeolimnology to evidence-based lake management and conservation: examples from UK lakes2012In: Aquatic conservation, ISSN 1052-7613, E-ISSN 1099-0755, Vol. 22, no 2, p. 165-180Article in journal (Refereed)
    Abstract [en]

    * To help meet the requirements of water legislation, palaeolimnology has been widely used to establish ‘reference conditions’ and restoration targets for lakes. However, its potential for assessing the necessity and appropriateness of different lake management activities has been less publicized. * With reference to selected case studies covering consultancy projects commissioned by UK conservation agencies, this study highlights the important applied role of palaeolimnology. Using varying combinations of diatom, plant macrofossil and cladoceran analysis, the degree, timing and in many cases the likely drivers of ecological change were inferred for several lake sites. * From this basis advice was given on a range of lake management issues, including the need for sediment removal to combat eutrophication and/or the necessity of other nutrient reduction measures (Case study 1), the depth of sediment to be removed to maximize restoration potential through exposure of dormant banks of characean oospores (Case study 2), the requirement for fish management (Case study 3), and advice regarding fish farm expansion and licensing (Case study 4). Where possible management responses to the recommendations are outlined including any major outcomes. * All case studies illustrate the advantages, for lake management and conservation decision-making, of placing current lake ecological conditions in the context of long-term change. Copyright © 2012 John Wiley & Sons, Ltd.

  • 21. Schaller, Jörg
    et al.
    Schoelynck, Jonas
    Murray-Hudson, Mike
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    van Pelt, Dimitri
    Hegewald, Tilo
    Mosimane, Keotshephile
    Gondwe, Mangaliso
    Wolski, Piotr
    Meire, Patrick
    Input, behaviour and distribution of multiple elements in abiotic matrices along a transect within the Okavango Delta, northern Botswana2016In: Environmental Monitoring & Assessment, ISSN 0167-6369, E-ISSN 1573-2959, Vol. 188, no 12, p. 682-Article in journal (Refereed)
  • 22. Schoelynck, Jonas
    et al.
    Schaller, Jörg
    Murray-Hudson, Mike
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Conley, Daniel
    van Pelt, Dimitri
    Mosimane, Keotshephile
    Gondwe, Mangaliso
    Wolski, Piotr
    Meire, Patrick
    Struyf, Eric
    The trapping of organic matter within plant patches in the channels of the Okavango Delta: a matter of quality2017In: Aquatic Sciences, ISSN 1015-1621, E-ISSN 1420-9055, Vol. 79, no 3, p. 661-674Article in journal (Refereed)
    Abstract [en]

    The role of in-stream aquatic vegetation as ecosystem engineers in the distribution of organic matter was investigated in the Okavango Delta, one of the world’s largest oligotrophic wetlands. The Okavango channel beds are covered up to 50% with submerged macrophyte patches. By accumulating and concentrating organic matter in the sediments below the patches, macrophytes are likely able to locally forestall a deficiency of nutrients. Up to 21 times more N, 18 times more C, 13 times more P and 6 times more Si can be found in vegetated sediments compared to non-vegetated sediments. Nutrient specific accumulation relates to its relative scarcity in the overlaying water. There is a depletion of dissolved N relative to P, whereas Si is relatively abundant. The Okavango Delta water can generally be characterised as oligotrophic based on plant species composition (e.g. presence of carnivorous plants and absence of floating plants), low plant N:P ratios, and low nutrient- and element-concentrations. Local mineralization and intensified nutrient cycling in the sediments is hypothesized to be crucial for the macrophytes’ survival because it provides a key source of the essential nutrients which plants otherwise cannot obtain in sufficient quantities from the nutrient poor water. By engineering the ecosystem as such, channel vegetation also retards the loss of elements and nutrients to island groundwater flow, contributing to one of the key processes driving the high productivity of the Okavango Delta, making it unique among its kind.

  • 23. Struyf, E.
    et al.
    Mosimane, K.
    Van Pelt, D.
    Murray-Hudson, M.
    Meire, P.
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Wolski, P.
    Schaller, J.
    Gondwe, M. J.
    Schoelynck, J.
    Conley, D. J.
    The Role of Vegetation in the Okavango Delta Silica Sink2015In: Wetlands (Wilmington, N.C.), ISSN 0277-5212, E-ISSN 1943-6246, Vol. 35, no 1, p. 171-181Article in journal (Refereed)
    Abstract [en]

    We assessed the role of vegetation and hydrology in the Si cycle in the Okavango Delta. Our results show a large storage of biogenic Si (BSi) in vegetation and the sediments. The biological storage is among the highest observed so far for any ecosystem worldwide. Floodplain vegetation accumulates similar amounts of BSi in both the temporary floodplains and the permanent floodplains, with most values observed between 20 and 100 g Si m(-2). This vegetation Si, after litterfall, contributes to a large biogenic Si storage in the sediments. In temporary floodplains, sediments contain less BSi (375-1950 g Si m(-2) in the top 5 cm) than in the permanent floodplains (1950-3600 g Si m(-2) in the top 5 cm). BSi concentrations in the floodplain sediments decline exponentially indicating rapid dissolution. In the occasional and seasonal floodplains, unidirectional solute transfer from floodplains to the islands will remove Si from the riverine systems. Our work clearly emphasizes the crucial role of floodplains and wetlands in Si transport through tropical rivers, and the potential interference of hydrology with this role.

  • 24. Sutton, Jill
    et al.
    André, Luc
    Cardinal, Damien
    Conley, Daniel
    de Souza, Gregory
    Dean, Jonathan
    Dodd, Justin
    Ehlert, Claudia
    Ellwood, Michael
    Frings, Patrick J
    Swedish Museum of Natural History, Department of Geology.
    Grasse, Patricia
    Hendry, Katharine
    Leng, Melanie
    Michalopoulos, Panagiotis
    Panizzo, Virginia
    Swann, George
    A Review of the Stable Isotope Bio-geochemistry of the Global Silicon Cycle and Its Associated Trace Elements2018In: Frontiers in Earth Science, E-ISSN 2296-6463, Vol. 5, no 112Article in journal (Refereed)
    Abstract [en]

    Silicon (Si) is the second most abundant element in the Earth's crust and is an important nutrient in the ocean. The global Si cycle plays a critical role in regulating primary productivity and carbon cycling on the continents and in the oceans. Development of the analytical tools used to study the sources, sinks, and fluxes of the global Si cycle (e.g., elemental and stable isotope ratio data for Ge, Si, Zn, etc.) have recently led to major advances in our understanding of the mechanisms and processes that constrain the cycling of Si in the modern environment and in the past. Here, we provide background on the geochemical tools that are available for studying the Si cycle and highlight our current understanding of the marine, freshwater and terrestrial systems. We place emphasis on the geochemistry (e.g., Al/Si, Ge/Si, Zn/Si, δ13C, δ15N, δ18O, δ30Si) of dissolved and biogenic Si, present case studies, such as the Silicic Acid Leakage Hypothesis, and discuss challenges associated with the development of these environmental proxies for the global Si cycle. We also discuss how each system within the global Si cycle might change over time (i.e., sources, sinks, and processes) and the potential technical and conceptual limitations that need to be considered for future studies.

    Download full text (pdf)
    fulltext
1 - 24 of 24
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf