BACKGROUND: Allergic rhinitis (AR) is one of the most common chronic diseases worldwide. There are limited prospective long-term data regarding persistency and remission of AR. The objective of this study was to investigate the natural course of pollen-induced AR (pollen-AR) over 20 years, from childhood into early adulthood.
METHODS: Data from 1137 subjects in the Barn/Children Allergi/Allergy Milieu Stockholm Epidemiologic birth cohort (BAMSE) with a completed questionnaire regarding symptoms, asthma, treatment with allergen immunotherapy (AIT) and results of allergen-specific IgE for inhalant allergens at 4, 8, 16 and 24 years were analyzed. Pollen-AR was defined as sneezing, runny, itchy or blocked nose; and itchy or watery eyes when exposed to birch and/or grass pollen in combination with allergen-specific IgE ≥0.35kUA /L to birch and/or grass.
RESULTS: Approximately 75% of children with pollen-AR at 4 or 8 years had persistent disease up to 24 years, and 30% developed asthma. The probability of persistency was high already at low levels of pollen-specific IgE. The highest rate of remission from pollen-AR was seen between 16 and 24 years (21.5%); however, the majority remained sensitized. This period was also when pollen-specific IgE-levels stopped increasing and the average estimated annual incidence of pollen-AR decreased from 1.5% to 0.8% per year.
CONCLUSION: Children with pollen-AR are at high risk of persistent disease for at least 20 years. Childhood up to adolescence seems to be the most dynamic period of AR progression. Our findings underline the close cross-sectional and longitudinal relationship between sensitization, AR and asthma.
In this study, an Air Quality Health Index (AQHI) for Stockholm is introduced as a tool to capture the combined effects associated with multi-pollutant exposure. Public information regarding the expected health risks associated with current or forecasted concentrations of pollutants and pollen can be very useful for sensitive persons when planning their outdoor activities. For interventions, it can also be important to know the contribution from pollen and the specific air pollutants, judged to cause the risk. The AQHI is based on an epidemiological analysis of asthma emergency department visits (AEDV) and urban background concentrations of NOx, O₃, PM10 and birch pollen in Stockholm during 2001⁻2005. This analysis showed per 10 µg·m⁻3 increase in the mean of same day and yesterday an increase in AEDV of 0.5% (95% CI: -1.2⁻2.2), 0.3% (95% CI: -1.4⁻2.0) and 2.5% (95% CI: 0.3⁻4.8) for NOx, O₃ and PM10, respectively. For birch pollen, the AEDV increased with 0.26% (95% CI: 0.18⁻0.34) for 10 pollen grains·m⁻3. In comparison with the coefficients in a meta-analysis, the mean values of the coefficients obtained in Stockholm are smaller. The mean value of the risk increase associated with PM10 is somewhat smaller than the mean value of the meta-coefficient, while for O₃, it is less than one fifth of the meta-coefficient. We have not found any meta-coefficient using NOx as an indicator of AEDV, but compared to the mean value associated with NO₂, our value of NOx is less than half as large. The AQHI is expressed as the predicted percentage increase in AEDV without any threshold level. When comparing the relative contribution of each pollutant to the total AQHI, based on monthly averages concentrations during the period 2015⁻2017, there is a tangible pattern. The AQHI increase associated with NOx exhibits a relatively even distribution throughout the year, but with a clear decrease during the summer months due to less traffic. O₃ contributes to an increase in AQHI during the spring. For PM10, there is a significant increase during early spring associated with increased suspension of road dust. For birch pollen, there is a remarkable peak during the late spring and early summer during the flowering period. Based on monthly averages, the total AQHI during 2015⁻2017 varies between 4 and 9%, but with a peak value of almost 16% during the birch pollen season in the spring 2016. Based on daily mean values, the most important risk contribution during the study period is from PM10 with 3.1%, followed by O₃ with 2.0%.
The paper suggests amethodology for predicting next-year seasonal pollen index (SPI, a sumof daily-mean pollen concentrations)over large regions and demonstrates its performance for birch in Northern andNorth-Eastern Europe. Astatistical model is constructed using meteorological, geophysical and biological characteristics of the previous year).A cluster analysis of multi-annual data of European Aeroallergen Network (EAN) revealed several large regions inEurope, where the observed SPI exhibits similar patterns of the multi-annual variability.We built the model for thenorthern cluster of stations, which covers Finland, Sweden, Baltic States, part of Belarus, and, probably, Russia andNorway,where the lack of data did not allow for conclusive analysis. The constructed modelwas capable of predictingthe SPI with correlation coefficient reaching up to 0.9 for somestations, odds ratio is infinitely high for 50% of sites insidethe region and the fraction of prediction fallingwithin factor of 2 from observations, stays within 40–70%. In particular,model successfully reproduced both the bi-annual cycle of the SPI and years when this cycle breaks down.