Change search
Refine search result
1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Olstrup, Henrik
    et al.
    Atmospheric Science Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden..
    Johansson, Christer
    Atmospheric Science Unit, Department of Environmental Science and Analytical Chemistry, Stockholm University, 11418 Stockholm, Sweden. Environment and Health Administration, SLB, Box 8136, 104 20 Stockholm, Sweden..
    Forsberg, Bertil
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Yrkes- och miljömedicin..
    Tornevi, Andreas
    Umeå universitet, Medicinska fakulteten, Institutionen för folkhälsa och klinisk medicin, Yrkes- och miljömedicin..
    Ekebom, Agneta
    Swedish Museum of Natural History, Department of Environmental research and monitoring.
    Meister, Kadri
    Umeå universitet, Samhällsvetenskapliga fakulteten, Handelshögskolan vid Umeå universitet, Statistik..
    A Multi-Pollutant Air Quality Health Index (AQHI) Based on Short-Term Respiratory Effects in Stockholm, Sweden2019In: International Journal of Environmental Research and Public Health, ISSN 1661-7827, E-ISSN 1660-4601, ISSN 1661-7827, Vol. 16, no 1, article id 105Article in journal (Refereed)
    Abstract [en]

    In this study, an Air Quality Health Index (AQHI) for Stockholm is introduced as a tool to capture the combined effects associated with multi-pollutant exposure. Public information regarding the expected health risks associated with current or forecasted concentrations of pollutants and pollen can be very useful for sensitive persons when planning their outdoor activities. For interventions, it can also be important to know the contribution from pollen and the specific air pollutants, judged to cause the risk. The AQHI is based on an epidemiological analysis of asthma emergency department visits (AEDV) and urban background concentrations of NOx, O₃, PM10 and birch pollen in Stockholm during 2001⁻2005. This analysis showed per 10 µg·m⁻3 increase in the mean of same day and yesterday an increase in AEDV of 0.5% (95% CI: -1.2⁻2.2), 0.3% (95% CI: -1.4⁻2.0) and 2.5% (95% CI: 0.3⁻4.8) for NOx, O₃ and PM10, respectively. For birch pollen, the AEDV increased with 0.26% (95% CI: 0.18⁻0.34) for 10 pollen grains·m⁻3. In comparison with the coefficients in a meta-analysis, the mean values of the coefficients obtained in Stockholm are smaller. The mean value of the risk increase associated with PM10 is somewhat smaller than the mean value of the meta-coefficient, while for O₃, it is less than one fifth of the meta-coefficient. We have not found any meta-coefficient using NOx as an indicator of AEDV, but compared to the mean value associated with NO₂, our value of NOx is less than half as large. The AQHI is expressed as the predicted percentage increase in AEDV without any threshold level. When comparing the relative contribution of each pollutant to the total AQHI, based on monthly averages concentrations during the period 2015⁻2017, there is a tangible pattern. The AQHI increase associated with NOx exhibits a relatively even distribution throughout the year, but with a clear decrease during the summer months due to less traffic. O₃ contributes to an increase in AQHI during the spring. For PM10, there is a significant increase during early spring associated with increased suspension of road dust. For birch pollen, there is a remarkable peak during the late spring and early summer during the flowering period. Based on monthly averages, the total AQHI during 2015⁻2017 varies between 4 and 9%, but with a peak value of almost 16% during the birch pollen season in the spring 2016. Based on daily mean values, the most important risk contribution during the study period is from PM10 with 3.1%, followed by O₃ with 2.0%.

1 - 1 of 1
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf