Change search
Refine search result
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1. Demidova, S. I.
    et al.
    Whitehouse, M. J.
    Swedish Museum of Natural History, Department of Geology.
    Merle, R.
    Nemchin, A. A.
    Kenny, G. G.
    Swedish Museum of Natural History, Department of Geology.
    Brandstätter, F.
    Ntaflos, Th.
    Dobryden, I.
    A micrometeorite from a stony asteroid identified in Luna 16 soil2022In: Nature Astronomy, E-ISSN 2397-3366, Vol. 6, no 5, p. 560-567Article in journal (Refereed)
    Abstract [en]

    Despite the intense cratering history of the Moon, very few traces of meteoritic material have been identified in the more than 380 kg of samples returned to Earth by the Apollo and Luna missions. Here we show that an ~200-µm-sized fragment collected by the Luna 16 mission has extra-lunar origins and probably originates from an LL chondrite with similar properties to near-Earth stony asteroids. The fragment has not experienced temperatures higher than 400 °C since its protolith formed early in the history of the Solar System. It arrived on the Moon, either as a micrometeorite or as the result of the break-up of a bigger impact, no earlier than 3.4 Gyr ago and possibly around 1 Gyr ago, an age that would be consistent with impact ages inferred from basaltic fragments in the Luna 16 sample and of a known dynamic upheaval in the Flora asteroid family, which is thought to be the source of L and LL chondrite meteorites. These results highlight the importance of extra-lunar fragments in constraining the impact history of the Earth–Moon system and suggest that material from LL chondrite asteroids may be an important component.

  • 2.
    Nemchin, Alexander
    et al.
    Curtin University.
    Jeon, Heejin
    University of Western Australia.
    Bellucci, Jeremy
    Swedish Museum of Natural History, Department of Geology.
    Timms, Nick
    Curtin University.
    Snape, Joshua
    Swedish Museum of Natural History, Department of Geology.
    Kilburn, Matthew
    University of Western Australia.
    Whitehouse, Martin
    Swedish Museum of Natural History, Department of Geology.
    Pb-Pb ages of feldspathic clasts in two Apollo 14 breccia samples2017In: Geochimica et Cosmochimica Acta, ISSN 0016-7037, E-ISSN 1872-9533, Vol. 217, p. 441-461Article in journal (Refereed)
    Abstract [en]

    Pb-Pb isochron ages of ca. 3.92 Ga for three K-feldspar-rich clasts from Apollo 14 breccias 14303 and 14083 were determinedusing Secondary Ion Mass Spectrometry (SIMS). These ages are interpreted to represent the resetting of the U-Pb systemin the clasts as a result of brecciation during the Imbrium impact. One of the clasts contains zircon grains that record asignificantly older crystallization age (ca. 4.33–4.35 Ga) for the rock represented by that clast. Initial Pb compositions determinedfor the clasts, combined with the previously measured Pb isotopic compositions of K-feldspar grains from severalApollo 14 breccia samples, constrain a range of initial Pb compositions in the ca. 3.9 Ga Fra Mauro formation at the Apollo14 landing site. This range in initial Pb compositions indicates that the rocks represented by these clasts, or the sources ofthose rocks, evolved with a high 238U/204Pb (µ-value) for substantial periods of time, although the precise crystallization agesof the rocks represented by at least two of the clasts investigated here are unknown.

    Download full text (pdf)
    fulltext
1 - 2 of 2
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf